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1.  INTRODUCTION

Percent of information transferred (IT) is the average
reduction in stimulus entropy given a subject’s re-
sponse, expressed as a percent of total stimulus entropy.

Miller and Nicely (1955) advocated the use of the in-
formation transfer IT statistic as a measure of the
amount of speech information transmitted from a
speaker to a listener.  The technique was subsequently
widely adopted in speech and hearing research as a tool
for investigating the capacity of various hearing aug-
mentation devices to enhance or restore the perception
of particular speech features by hearing impaired indi-
viduals.  Inter alia, Von Wallenberg, Hochmair and
Hochmair-Desoyer (1990), Dorman, et al. (1990), Van
Tasell, et al. (1992), Mckay and McDermott (1993),
Summers, et al. (1994),  and Cazals, et al. (1994) all
report information transfer statistics.

The Iowa consonant confusion test (Tyler, et al.,
1983) is a typical example of the type of stimulus-
response paradigm used to estimate information trans-
fer.  This test involves 12 presentations of each of 10
consonants (p,t,k,c,b,d,v,z,n,m) in completely random
order.  The results of a single administration can be
displayed as a confusion matrix similar to Figure 1.

Response
p t k c b d v z n m

p 0 2 6 0 2 1 0 0 0 1
t 0 3 2 0 1 1 1 4 0 0
k 0 1 3 3 0 0 1 2 1 1
c 1 1 2 3 2 0 1 0 1 1

Stimulus b 1 0 3 0 2 0 1 2 3 0
d 1 0 5 0 0 2 0 0 0 4
v 1 2 1 0 0 3 2 1 2 0
z 1 2 0 0 2 0 3 0 2 2
n 0 1 0 0 0 0 0 0 4 7
m 0 0 0 0 0 0 0 0 4 8

Figure 1: A consonant confusion matrix.  The
consonants p, t, k, c, b, d, v, z, n, and m were pre-
sented aurally 12 times each in random order to a
hearing impaired subject.  Columns indicate the
subject’s report of what he heard.  For example for
the 12 presentations of “p” this subject heard “t”
and “b” twice, “k” six times, and “d” and “m” once
.

Each row of the confusion matrix corresponds to a pho-
neme stimulus presented aurally to the subject.  The
columns correspond to the subject’s attempts to identify
each stimulus.  Generally, each stimulus is presented the
same number of times (k).  In this example, k =12 .

Our notation for the contents of the confusion matrix
is shown in Figure 2.  Here n denotes the number of
stimuli ( n =10  in Figure 1) and csr  is the number of
times the subject reported hearing stimulus r when
stimulus s was presented.
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Figure 2: Confusion matrix notation.

Row, column, and grand totals for the confusion ma-
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Our theoretical analysis of information transfer rests
on some assumptions regarding the statistical properties
of a subject's responses.  We assume that the rows of
the confusion matrix have a product multinomial distri-
bution.  That is, the rows of the confusion matrix are
statistically independent, and each row vector
( , , )c cs sn1 $  has a multinomial distribution with pa-
rameters ( , , , )k p ps sn1 $ .

The symbol psr  is the probability that the listener
will give response r to stimulus s.  The assumption that
rows are independently distributed multinomial random
vectors implies that response probabilities do not
change over the duration of a test session and are not
affected by context within a session.

The expected number of confusions of r for s is de-
noted f E c kpsr sr sr= =( ) .  The matrix of expected
confusions { }f sr  is the listener's true confusion matrix,
while the matrix of observed confusions { }csr  is the
listener's observed confusion matrix, or simply, the
confusion matrix.
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2.  THE INFORMATION TRANSFER STATISTIC

Miller and Nicely’s (1955) information transfer sta-
tistic (IT) is the reduction in average stimulus entropy
given the subject’s responses expressed as a fraction (or
percent) of the total stimulus entropy.  Miller and
Nicely refer to entropy as mean logarithmic probability
(MLP).

When expressed in base-2 logarithms, the entropy of
a text can be interpreted as the minimum number of bits
(binary digits) needed to transmit the text in compressed
form.  (In our example the text consists of 12 repetitions
of 10 consonants in random order.)  Given a degraded
version of the text (for example a subject’s report of
what he or she heard) the residual entropy is the number
of additional bits needed to correct the degraded text.
The information transferred by the degraded text is the
total entropy minus the residual entropy.

Mathematically, the stimulus entropy is,
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and the residual entropy is,
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Total information transmitted is H(S) H(S| R)− ; conse-
quently the proportion of information transmitted is,

IT
H(S|R)

H(S)
= −1 (1)

If the subject responds perfectly, then f kss =  and
f for s rsr = ≠0, .  In this case it is easy to see that
H(S|R) = 0 , and consequently IT = 1 . Conversely, if
the subject responds randomly, then f k nsr = , in
which case it is easy to show that H(S|R) = H(S) , so
that IT = 0 .

We will refer to the information transfer statistic
computed from the expected confusion matrix as the
true information transfer (IT).  The IT statistic com-
puted from an observed confusion matrix will be called
the sample information transfer ( IT% ).  Sample infor-
mation transfer is intended to estimate true information
transfer.

Miller and Nicely (1955) knew that sample informa-
tion transfer was biased upward and recommended that
the ratio of presentations to stimuli ( k n ) should ex-
ceed 2 for reliable IT estimation.  However, we have
investigated the magnitude of this bias in confusion
matrices typical of cochlear implant wearers for whom
information transfer numbers under 20% are not un-
common.  In this case we have found that the bias can
exceed 100% even when k/n=4 (See Figure 3).
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Figure 3.  Relative bias of the sample informa-
tion transfer, ( 100 ⋅ −E IT IT IT(( % ) / ) ), based on
1000 simulations of k repetitions of n=10 stimuli
for three hypothetical subjects with true informa-
tion transfer between 3% and 50%.

To achieve k n = 4  in our example, a subject would
be required to respond to 40 presentations of 10 conso-
nants, a total of 400 presentations -- requiring about 25
minutes to complete at the Iowa Cochlear Implant Proj-
ect.  In clinical practice it would not be practical to ask
a subject to respond to that many stimulus presenta-
tions.  Therefore, we have investigated the use of two
statistical methods of bias reduction to improve the va-
lidity of the sample information transfer for clinically
practical values of k n :  Quenouille’s jackknife and
Efron’s bootstrap.  This paper reports the results of
simulation studies of the performance of the bootstrap
and jackknife.

3.  THE JACKKNIFE AND BOOTSTRAP

The bias of a statistic is the difference between its ex-
pected sample value and its true value as computed
from the population.  The key idea of the bootstrap is to
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approximate the bias by resampling from a sample.  In
other words, the obtained sample is used as a proxy for
the population, and samples from the sample are used as
proxies for repeated sampling from the population.  The
difference between the observed statistic and its mean
over all possible resamples provides an estimate of the
bias of the statistic compared to the population.  This
bias estimate is then subtracted from the statistic to re-
duce its bias.

Suppose that S is the statistic based on the observed
sample and that S*  is the same statistic computed from
a sample of the same size drawn with replacement from
the observed sample.  The bootstrap estimate is,

S S biasboot boot= − %  ,

where the bootstrap bias correction is,

% ( )*bias E S Sboot resamples= − .

Bootstrap bias correction is computer-intensive, often
requiring hundreds of resamples to obtain a stable esti-
mate.  Simulating the performance of the bootstrap is
doubly computer intensive as it is necessary to simulate
hundreds of hypothetical samples from which hundreds
of resamples must be drawn to compute each replication
of the bias-corrected statistic.

The less computer-intensive jackknife bias correction
for a statistic computed from N independent observa-
tions involves leaving out observations one at a time.
Suppose that S is the statistic based on the complete
sample, and S( )i  is the statistic computed from the same
sample after deleting the ith observation.  The bias cor-
rection is,

( )( )
1

( 1)ˆ
N

jack i
i

Nbias S S
N =

−= −∑ (2)

We made a small simulation study to provide a rough
assessment of the comparative performance of the boot-
strap and jackknife bias corrections for the information
transfer statistic.  We used three hypothetical subjects
with consonant information transfer numbers of 3.7%,
27.1% and 53.3%, respectively.  Their true confusion
matrices were synthesized by pooling confusion matri-
ces from several cochlear implant wearers participating
in the Iowa Cochlear Implant project. True information
transfer values were computed using (1).  The three true
(expected) confusion matrices, along with their corre-
sponding IT values, are shown in Figure 4.

In our simulation studies, sample confusion matrices
were randomly generated for k = 5 , 10, 20, and 40
repetitions of each stimulus using the multinomial as-
sumptions discussed above (Figure 5).  Multinomial
probabilities are computed as,

p f fsr sr s= +/

For each of the three hypothetical subjects, and for each
of four different values of k, a sample of M =15  con-
fusion matrices was generated.  The information trans-
fer for each of these 180 matrices was estimated using
three different methods: raw, uncorrected IT% , jack-
knife-corrected ITjack

% , and bootstrap-corrected ITboot
% .

The relatively small number of replications (15) was
dictated by the extensive computing time required for
generating 300 bootstrap re-resamples for each of 180
samples; however, it was sufficient to indicate that the
jackknife gives superior bias correction (Figure 6).

Subject 1 (IT= 3.7%) Subject 2 (IT= 27.1%) Subject 3 (IT=53.3%)
Response Response Response

Stimulus p t k c b d v z n m p t k c b d v z n m p t k c b d v z n m
p 6 6 7 8 8 12 10 3 4 2 8 6 1 1 2 3 0 2 0 1 10 6 2 0 0 0 0 0 0 0
t 9 8 4 11 6 10 5 6 5 2 2 9 1 4 1 3 0 3 0 1 3 14 0 0 0 1 0 0 0 0
k 3 11 9 9 6 8 6 6 2 6 5 4 5 4 0 4 0 1 1 0 6 6 4 0 0 0 1 1 0 0
c 4 7 4 15 3 8 1 12 8 4 0 1 1 18 0 2 1 1 0 0 0 0 0 16 0 0 0 2 0 0
b 6 10 5 8 8 7 5 5 3 9 6 0 1 2 8 3 2 0 0 2 1 0 0 0 6 1 7 2 0 1
d 6 8 6 4 6 7 6 8 8 7 0 2 1 3 4 10 1 1 0 2 0 0 0 0 1 9 6 2 0 0
v 5 3 7 9 8 5 13 4 6 6 5 0 2 5 3 4 2 2 0 1 0 0 0 0 0 4 9 5 0 0
z 7 1 7 6 3 11 7 8 13 3 3 1 2 5 0 2 1 3 5 2 0 0 0 1 0 3 3 11 0 0
n 6 8 9 2 4 6 8 5 9 9 2 0 1 0 1 0 0 0 4 16 0 0 0 0 0 0 0 2 10 6
m 4 7 6 3 5 7 5 6 14 9 1 0 0 0 0 0 0 0 7 16 0 0 0 0 0 1 0 1 5 11

    Figure 4.  True expected confusion matrices for three hypothetical subjects used in the simulation study.
Matrices were developed by aggregating data from several cochlear implant wearers participating in the Iowa
Cochlear Implant Project.
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Figure 5.  Design of the simulation study.  M sample confusion matrices were generated by multinomial
sampling from each of 3 true confusion matrices (Figure 4).  M=15, supplemented to 1000 for the jack-
knife.  For each sample confusion matrix B=300 bootstrap re-samples were drawn to compute the boot-
strap bias correction.

We supplemented the small simulation study with
1000 additional replications for the uncorrected and
jackknife-corrected information transfer statistic.  The
results are shown in Figure 6. We derived the estimate
of the bias of IT%  for a given sample confusion matrix C
by treating C as a function of N nk=  consonant pres-
entations.  That is, letting Csr  denote the observed con-
fusion matrix C with entry csr  replaced by csr −1  for
csr > 0 .  Then from (2),

% ( ) % %bias IT( ) IT( )jack = − −












>
∑N

N
csr

csr

1 1

0
C Csr . (3)

The jackknife bias-corrected estimate of the information
transfer estimate is given by,

IT  IT biasjack jack
% % %= − (4)

(Efron and Tibshirani, 1993, p 138).
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A sample confusion matrix can be interpreted as
N nk=  observations of a subject's response to a

stimulus.  A jackknife sample is determined from the

k/n=0.5
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Figure 6.  Relative absolute bias (100⋅ −| ( %)|/IT E IT IT ) of uncorrected, jackknife-corrected, and boot-
strap-corrected Information Transfer.  Based on 1000 (uncorrected, jackknife) or 15 (bootstrap, B=300))
simulated confusion matrices for three hypothetical hearing-impaired subjects.  Error bars are plus or
minus one standard error.

original collection of observations by removing one of
these responses.  A new confusion matrix is formed
with the remaining N −1  observations.  The informa-
tion transfer of this new matrix is calculated to give one
jackknife replication of the information transfer statis-
tic.  The process is repeated N times, once for each of
the nk observations.  The difference between the aver-
age of these N replications and the information transfer
of the original matrix C is then multiplied by N −1  to

give the jackknife estimate of bias.  Note that the jack-
knife replications corresponding to any two observa-
tions in the same cell of the matrix will be equal.  Thus,
it is only necessary to calculate one jackknife replica-
tion for each non-zero cell in the original confusion
matrix. C.  The following example should make these
points clear.
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Let C =
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 be a sample from a true confusion ma-

trix, and let IT be the true IT.  Note that n = 2  and
k = 4 .  Using (1), we estimate IT as IT% ( ) .C = 0 5488 .
To compute ITjack

%  we remove one observation at a
time.  When the first observation is removed, the re-

sulting confusion matrix is IT ja c k
% .  Removing

any one of the first three observations will yield this
same confusion matrix.  Removing the fourth observa-

tion yields C12 =
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.  Thus,

the average of the 8 jackknife replications of informa-
tion transfer is computed as

( )
( )

1
8

3 4

1
8

3 0 4766 1 000 4 0 5295 0 5685

IT IT IT

         

% ( ) % ( ) % ( )

( . ) . ( . ) .

C C C11 12 22+ +

= + + =

From (3) the jackknife estimate of bias is then given by,
( )( )% ( ) . . .bias     jack = − − =2 4 1 0 5685 0 5488 01379 .

The jackknife bias-corrected estimate of information
transfer from (4) is,

IT     jack
% . . .= − =0 5488 01379 0 4109 ,

which is an improved estimate of IT.

4.  DISCUSSION

Uncorrected estimates of small IT values are grossly
biased.  For IT = 3%, relative biases of 300% are possi-
ble even when k n = 2 .  The most surprising finding is
the poor performance of the bootstrap.  This procedure
generally outperforms the jackknife (Efron and Tibshi-
rani 1993, p 145-6), and its behavior for the IT statistic
needs further investigation.

For k n ≤ 1 and small IT, it is not possible to reduce
the bias to acceptable levels.  For k n ≥ 2 , the jackknife
reduces the relative bias to 20% or less for IT ≥ 3% and
to less than 2% for IT ≥ 30%.  The bootstrap performs
consistently worse than the jackknife for all values of
k n  and IT.  Since the bootstrap is considerably more
computationally intensive, it is therefore not a useful
option.

Jackknife-corrected information transfer numbers
have less than 20% relative bias for IT as small as 3%
when k n ≥ 2 , as recommended by Miller and Nicely.
Since increasing k n  to 4 does not materially reduce

the bias, there is only a slight benefit in using k n > 2 .
Thus the Miller-Nicely rule, when combined with jack-
knife bias correction, appears to be a reliable rule of
thumb.

Uncorrected IT estimates are extremely biased for
small IT values and should not be used without jack-
knife correction.  Since the jackknife is easily imple-
mented, we recommend that audiological researchers
routinely correct IT numbers for finite-sample bias.
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