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SUMMARY

The likelihood function of a bivariate Poisson cluster process is derived in closed
form. Although maximum likelihood estimation in this setting is quite computationally
intensive, an example demonstrates the successful convergence of a maximum likelihood

estimation procedure for a small data set.
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1. INTRODUCTION

Spatial cluster processes have been developed in several different forms (Neyman and Scott,
1958, 1972; Strauss, 1975; Kelly and Ripley, 1976; Ripley, 1977; Diggle, 1975, 1978, 1983). Neyman
and Scott (1972) discuss several applications, including the spatial distribution of larvae on an
experimental field and the clustering of galaxies. In this article we consider bivariate Poisson cluster

processes given by the following three postulates:



PCP1 Parent events occur according to a homogeneous Poisson process in 2 with intensity p.

PCP2 Each parent j produces a random number S; of offspring, realized independently and iden-

tically for each parent according to a Poisson distribution with mean v.

PCP3 The positions of the offspring relative to their parents are independently and identically

distributed in ®? according to a common bivariate density function h(-; @) with mean (0,0).

Note that such a process is stationary.

A realization of this Poisson cluster process is taken to be the collection of all offspring events in
a region A € R2. Perhaps an extra “Poisson” should be inserted into the name since there are two
Poisson distributions involved (one of the parent process and the other of the offspring counts), but
it is omitted for simplicity.

Previous authors have declared the likelihood function for a Poisson cluster process intractable.
Baudin (1981) derives an overly general expression for the likelihood of a Poisson cluster process
(see L(Y,k,U) at the top of p. 884), describes it as “obviously unrealistic” due to its “prohibitive
complexity” and recommends basing estimation techniques instead on nearest neighbor distances,
Ripley’s K-function, and the spherical contact distribution (see Stoyan, D., Kendall, W. S. and
Mecke, 1987). Stoyan (1992) concurs that maximum likelihood estimation is intractable and develops
estimation methods based on Baudin’s suggestions.

In this paper we derive the likelihood function, simplify its form considerably, and illustrate its
computation and (local, at least) maximization for the special case of a bivariate normal offspring
displacement distribution. It is not our intention to provide a method for immediate practical
applicability; with current computing power, the maximum likelihood estimation solution is only
feasible for toy examples such as ours. Rather, we present the likelihood function itself in closed form
and encourage research on alternatives to traditional likelihood maximization. Previous expressions
for the likelihood (such as that in Baudin, 1981) lack readiness for implementation and clarification
of computational complexity. The solution we develop addresses both of these issues for a special

case, achieving implementation-readiness and characterizing computational complexity.



2. THE LIKELIHOOD FUNCTION

Consider the Poisson cluster process we have described, observed in a region A € R2. The

parameters of this process are ® = {p,v,0}. The observed data are
Y = {locations of offspring in A} = (y1,...,yn), where y; = (yi1, i)

There is a substantial amount of latent data in this model formulation. The latent data are as

follows:

k = +#(parentsin A)

p = {parent locations} = (p1,..., )", where p; = (i1, piz)’
211 21k

Z = {“allocations”} =
Znl Znk

1, if offspring 7 belongs to parent %
where zj; =

0, otherwise

The latent data component Z can also be referred to as “cluster memberships” or “parentage

identifiers.” The cluster counts can be represented as the column sums of Z:
s = {cluster counts} = (S1,...,Sk)’, where S; = Z;;l Zji

Note that the “sample size” (n, the total number of offspring) is random. However, we proceed as
is standard in statistical inference for spatial point processes and condition on the observed sample
size (see e.g. Ripley, 1977, 1981, 1988; Diggle, 1983; Baddeley and Mgller, 1989). Also, we point out
that our analysis does not take “boundary effects” into account. It is possible for parents outside
the region of study A to produce offspring within A and for parents in A to have offspring outside A.
Bias may be introduced when boundary effects are not accounted for, especially when many parent
events occur near the boundary. Possible remedies such as addition of a “buffer zone” around A,
toroidal edge corrections, or re-definition of the likelihood to incorporate truncation, are beyond the

scope of consideration of this paper.



Let the observed-data likelihood be represented as p(Y|®,n). Our main result is the expression
of this likelihood in closed form, which we accomplish by obtaining the complete-data likelihood
p(Y,Z, p, k|®,n) and integrating over the latent data. We can write the complete-data likelihood
as:

P(Y,Z, p, k|®,n) = p(Y|Z, p, k, @, n)p(Z|pe, s, k, @, n)p(p, s|k, &, n)p(k|®, n) (2-1)
Each factor on the right-hand-side of (2-1) is derived in what follows. First note that

p(k|®,n) = p—(”“;’(i')g;k'q’) (2:2)

Clearly n|{k,®} ~ Poiss(kv) and k|® ~ Poiss(p|4|), and so we have

pin, @) = EV PR

and

(p| AD¥ exp(—p|A))

p(k|®) = =

To obtain the denominator of (2-2), we first establish the following lemma.

Lemma 1 Suppose X ~ Poiss(\) and n is a positive integer. Let U(t) denote the moment generating
function of X,

(1) = exp {A [exp(t) — 1]}

and let U™ (ty) denote the n'™ derivative of U(t) with respect to t evaluated at t,

d™w(t)
p(n) —
(tO) dem to
Then
T () = Zan,j)\j exp {\[exp(t) — 1] + jt}
j=1
where

1, ifj=lorj=n
Qp,j = (23)
jlan—1;) +an—1 -1, otherwise



Proof: see Appendix 1.

Now,

k
p(n|®) = pr (Zsi:n (I>>

Zpr (Z Si=n
q=0 i=1
_ <V” exp {—[1 — exp(—v)] P|A|}> .

k =q,<1>> pr(k =q|®)

n!
iqn {[pIAI exp(—V)]leqp!{—plAl eXP(—V)}}
_ (Vn exp {_ [1 —nf;Xp(—V)]P|A|}> E(Xn)

where X ~ Poiss (p|A|exp(—v))
- (el S gy

n!
i=1

1 ifj=lorj=mn

)
where a,, ; =

j(an_m) +an—1,5-1, otherwise
where the last equality follows from Lemma 1.
Next observe that (pq, ..., ;) |[{k, ®,n} are independent and distributed uniformly on A, s|{k, ®,n} ~

Mult (n, %1), and p and s are independent, so that

1 n 1
p(p, sk, ®,n) = TAfF (51 _ Sk) T

Given the offspring counts, all possible allocations satisfying the offspring counts are clearly
equally likely (marginally, not taking into account the offspring locations). Denote the set of all

possible allocations as Q(s). The cardinality of {)(s) is given by

o) = (5" )

and so
p(Z|p,s, k, ®,n) =
(s,.%5.)
Finally, since {y1,...,yn} are independent, we have
k n
p(Y|Z, .k, ®,m) = [[I[ny; — s )17
i=1 j=1



Combining terms and simplifying, we arrive at the form of the complete-data likelihood:

k k

L exp[— k:V—p|A|exp 7.
(Y, Z, p, k|®,n) = £ HH — i )7 (2-4)

Z] 1 an,j [p|Alexp(— i=1j=1

where {an, ;} are defined as in (2-3). It can be integrated to produce the observed-data likelihood:
p(y|®,n) = /---/p(Y,Z,u,k|<I>,n) dp dZ dk

Z > Z// // (Y,Z, p, k|®,n) dp (2-5)

k=0 scA, (k) ZeQ(s)

where A, (k) = all possible values of s given k and n.

An important special case of a Poisson cluster process results from taking the offspring displace-
ment distribution to be bivariate normal with mean (0,0) and positive definite covariance matrix
3 = (0y;). In this case, @ = (011,022,012)" and the integral over p in (2:5) can be simplified to a

closed-form, easily computed expression, as shown in the following lemma.

Lemma 2 Suppose the offspring displacement distribution of a Poisson cluster process is bivariate
normal with mean (0,0) and covariance matriz ¥ = (0y;). Then [[ ,--- [[ ,p(Y,Z,pu, k|®,n) dp
can be expressed as a product of terms of the form ¢P(X € A), where ¢ is a simple algebraic

expression, and X has a bivariate normal distribution with known parameters.

Proof: see Appendix 2.

3. COMPUTATIONAL ASPECTS

In the bivariate normal case, the integral in (2-5) can be calculated numerically using readily
available techniques. For example, if A is a square region, then the integral can be calculated by the
function pmvnorm in S-Plus version 4.5 for Windows (Mathsoft, Inc.).

The summation over k in (2-5) can be justifiably truncated, for example at n (otherwise it
would not make sense to model the data as a cluster process in the first place). This reduces the
observed-data likelihood to the summation of a finite number of computable terms, which can thus
be maximized (in principle, at least) by an optimization procedure such as the Nelder-Mead simplex

method (see Nelder and Mead, 1965; Olsson and Nelson, 1975; and Press et al., 1988, section 10.4).



The summations over s and Z, however, pose serious problems for even moderately-sized data
sets. The number of terms grows astronomically with n. The cardinality of A, (k) is difficult to
calculate, but it can be shown by a simple combinatorial argument that the number of ways to
choose a collection of non-zero counts is (7 1), and so # (An(k)) > (7~]). Expressions describing

the exact number of such terms are unwieldy, but it will suffice to demonstrate that for £k = 2 and

n odd, we have

OND DREET

s€EAL(2) ZEQ(s)

This result follows from the fact that there are 2" ways to allocate n offspring to 2 ordered clusters,
and each such possibility has a redundant duplicate (for n odd, at least) since order should not be
counted. Thus, it would appear that computation of even one likelihood value (using a truncation
of k) for a moderately-sized data set is infeasible in current computing environments. Since the
computation of the likelihood itself is the bottleneck in parameter estimation for this situation, we

encourage research on techniques to work with truncated versions of the likelihood function.

4. EXAMPLE

For illustrative purposes, we implement a Nelder-Mead simplex algorithm to find a local maxi-
mum of the observed-data likelihood (2-5) for a very simple pattern, shown in Figure 1. This pattern
is a realization of a Poisson cluster process on the unit square with bivariate normal offspring dis-
placement, conditional on two clusters centered at pu, = (.33,.67)" and p, = (.67,.33)', 7 events in
each cluster, and dispersal parameters 17 = 092 = 0.0025, p12 = 0.8. Clearly this is only a toy ex-
ample, but it is useful to demonstrate successful convergence of the Nelder-Mead simplex algorithm
in our context.

Following the guidelines of Olsson and Nelson (1975) for bounded parameters, we transform
® = {p,v,011,022,012} to {logp,logr,logoi,logoa,22(p12)}, where pio is the correlation and
z(+) is Fisher’s z-transformation, for use in the actual algorithm. The starting simplex (shown in
Table 1) is chosen to be very close to the true value of the parameter vector (to represent a “best

case” scenario). Only the values {1,2,3,4} are used for k in each likelihood computation. The



Small test pattern: offspring locations

Figure 1: Small test pattern to demonstrate Nelder-Mead simplex maximum likelihood estimation

procedure.

clusters in the test pattern Figure 1 were intentionally located far from the boundary so that the
term Hle (P(x; € A))? in (2-5) (see Lemma 2) is extremely close to 1 and need not be computed
at each iteration.

The Nelder-Mead simplex algorithm was run until the relative difference between likelihood
values at successive iterations was less than 0.0001 (i.e., with a fractional tolerance of 0.0001). The
simplex converged in 84 iterations and required 18.27 hours of computation time. Virtually all of the
computation time was spent in calculation of the likelihood. Table 2 shows the resulting parameter
estimates, along with true values and also values computed separately using the true allocations Z
and the usual sample correlation coefficient and sample variance. The source code was written in
C++ using matrix and random number libraries authored by Davies (1997). Simulations were run
on a Hewlett Packard workstation with a 132 MHz CPU and 128 Mb RAM..

The Nelder-Mead simplex estimates of 011, 022 and py2 are very close to the estimates obtained
with knowledge of Z. This is not too surprising since the pattern has clear structure, and the Nelder-

Mead simplex starting values are close to the true values. Experimentation with other starting



p v 011 022 P12

3 8 0.003 0.002 0.75
2 8 0.003 0.002 0.75
3 7 0.003 0.002 0.75
3 8 0.002 0.002 0.75
3 8 0.003 0.003 0.75
3 & 0.003 0.002 0.8

Table 1: Starting simplex used in Nelder-Mead simplex algorithm for small test pattern.

P v o11 022 P12

Nelder-Mead simplex  2.29651  7.65753  0.003154 0.002622 0.827185
Truth  (k=2) (S, =25,=7) 00025  0.0025 0.8

Estimates given Z 0.003150 0.002464 0.824253

Table 2: Parameter estimates from Nelder-Mead simplex algorithm implemented for small test

pattern, along with true values and estimates computed using knowledge of Z.

simplex values suggests that the algorithm converges to many different local maxima, and many

more iterations of the algorithm are usually required.

5. CONCLUSIONS AND FUTURE DIRECTIONS

We have derived in closed form the likelihood function of the two-dimensional Poisson cluster process
with biviariate normal dispersal. Although the ensuing maximum likelihood estimation method is
not currently practical for reasonably sized data sets, the approach has potential utility in the future:
the enumerative nature of the computation of a likelihood value makes it suitable for parallel com-
puting. Future research can characterize the error induced by ignoring boundary effects and derive

variance estimates for the MLE’s. Experimentation with multiple starting values and assessment, of



the convexity of the likelihood surface can improve confidence in the results.

APPENDIX 1

Proof of Lemma 1

We prove by induction. First note that ¥()(t) = Xexp {\[exp(t) — 1] +t}, and so the lemma

holds for n = 1. Suppose that the lemma holds for n = m, where m > 1. Then

m

gDy = Z (am,; N exp {A[exp(t) — 1] + jt}) [N exp(t) + 4]

~
Il
=

I
NE

(am N1 exp {A[exp(t) — 1] + (j + 1)t} +

.
Il
=

jam,j/\j exp {\ [exp(t) — 1] +jt})

= amdexp{Aexp(t) 1]+t +

(@m,j—1 + jam,;) M exp {Alexp(t) — 1] +jt} +

M

a:mm)\m“ exp {\[exp(t) — 1] + (m + 1)t}

= am+iaAexp{Aexp(t) — 1] +¢t} +

> amar N exp {X[exp(t) — 1]+ jt} +

j=2
Gt A" exp {A [exp(t) — 1] + (m + 1)t}
m—+1
= Z am+1’j)\f exp {\[exp(t) — 1] + jt}
j=1

Thus the lemma is satisfied for any integer n > 1, and the proof is complete. O

APPENDIX 2

Proof of Lemma 2

First, we have

//A"'//AP(Y’Z’”’k|¢’") dp

= p(k|®, n)p(s, slk, @, n)p(Z|u,s, k, B, ) / / L / / Y1) A

10



since
notation
Xi7
[X]® =
1,
and
Xi7
[Xi]® =
0,

p(k|®,n)p(p,s|k, ®,n)p(Z|w,s, k, ®,n)

is constant in p (see (2-1) and (2-4)). Define the

(for any expression X; depending on i)
otherwise

(for any expression X; depending on i)
otherwise

and an alternative indexing scheme for the elements of Y:

Yit,---

» Yik

(yi1;1, yi1;2)', B (yik;layik;Q)l

= locations of offspring from parent .

The remaining integral can be re-written as follows:

/o1

p(Y|Z7p'a k: (I),’fl) dp‘

n

- //A // Hlel 1 0) du
N //A//Af[ ﬁhyu 10| dw

_ //A

1.1

Si ( 1
1
=1 \[27m(011022 — 0%,)]”

-1

expy ————— -
{2(011022 —01y)

®
[022 (yij;l - ,Ui1)2 + o011 (yij;z - ,Ui2)2 — 2012 (yij;l - ,Uil) (yij;Z - ,uiz)] })] dp

1

-1

27 (011022 — 01,)]* i)

Si

) 1
Zyij;l -3
j=1

S;

2012 E Yijs1Yij2 —
—

2w
Si

J
] 1
(011022 - 012
A

(1[5

——
011022 - 012)

2 2

S; S; 1 S;i
2
+ o011 E yij;g - ? Z Yij2 -
j=1 j=1

E yij;l
i=1

1 (& S
A Z Yij Z Yij;2
t\j=1 j=1

-1
exp .
% (2(0’110’22—0%2)

| ()
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1 i
o2 | Si | i — o > vija +ou [ Si | piz — Zyzg ;2 -
(2 le

- ®
1 & 1 &
2012 | S; | pir — 5 Zyij;l Piz = o E Yij;2 dp
ti=1 vi=1

1 -1
= exp _— .
{ [27T(011022 —0’%2)] } [2(011022 _0-%2)

3

f}-

n n n k
2r 1
022 nyl + 011 Z y?’2 — 207> Z Yij1Y;2 { [S (011022 — 0-%2) 2
j=1 j=1 j=1 i=1
] k 1 Si S;i
exXp | —0——5~ - |o Yij; +0o Yi
2011095 — 0%2) ; S; 22 JX:; ;1 11 P ;2

S; S; © k
200 | > wis | | D wije {H [pr(x; € A)] }
j=1 j=1 i=1
S; S;
1 « 1 « 1
xj ~ N _Zyij;la _Zyij;Z ;
Si o Si o Si

where
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