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ABSTRACT

In the analysis of spatial point patterns, it is generally assumed that the
underlying spatial point process is “isotropic,” i.e., that all characteristics are ho-
mogeneous with respect to direction. However, this is known in many applications
not to be the case. For example, the distribution of plant seedling locations often ex-
hibits directional asymmetry, or “anisotropy,” due to factors such as prevailing wind
direction and systematic migratory behavior of seed carriers. Failure to account for
such directional inhomogeneity can result in erroneous inferences.

A special type of spatial point process is considered, namely the 2-dimensional
Poisson cluster process with bivariate normal offspring dispersal (BVNPCP). Esti-
mation of the parameters of a BVNPCP (the focus being the “cluster shape/scale
parameter,” the covariance matrix of the offspring dispersal distribution) is par-
ticularly challenging due to the substantial amount of latent data. The offspring
relationships, number of parents and locations of parents are all unknown. Two
approaches for testing for and estimating anisotropy are developed and applied to
a collection of actual and simulated spatial point patterns.

The first approach considers the BVNPCP as a finite mixture model and com-
bines EM algorithm parameter estimates, computed separately for different num-
bers of clusters, in a Bayesian model averaging type scheme. A “composite EM”
estimator of the cluster shape/scale parameter is thus constructed, along with an es-
timated asymptotic variance computed from a combination of observed information

matrices.



In the second approach, a reversible jump Markov chain Monte Carlo (RJM-
CMC) technique for 2-dimensional normal mixtures is developed. RJIMCMC ex-
tends the traditional MCMC capabilities by providing for transitions between differ-
ent parameter spaces, which are needed in our situation due to the unknown number
of clusters. A new convergence assessment method, applicable to any RIMCMC
situation in which distinct models can be identified, is designed and theoretically
justified. Output analysis methods are also developed, including anisotropy test-
ing/estimation, model checking and inference for number of clusters. The RIMCMC
technique is flexible and has potential to apply to more complicated spatial point

processes, and also other mixture-related problems.
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ABSTRACT

In the analysis of spatial point patterns, it is generally assumed that the
underlying spatial point process is “isotropic,” i.e., that all characteristics are ho-
mogeneous with respect to direction. However, this is known in many applications
not to be the case. For example, the distribution of plant seedling locations often ex-
hibits directional asymmetry, or “anisotropy,” due to factors such as prevailing wind
direction and systematic migratory behavior of seed carriers. Failure to account for
such directional inhomogeneity can result in erroneous inferences.

A special type of spatial point process is considered, namely the 2-dimensional
Poisson cluster process with bivariate normal offspring dispersal (BVNPCP). In this
process, “parent” events are assumed to be located uniformly in some region. Each
parent event gives rise to a collection of “offspring” events, displaced according to
a common bivariate normal distribution. The resulting point pattern is taken to be
the collection all offspring events, with no information about parents recorded. If
the covariance matrix (called the “cluster shape/scale parameter”) of the bivariate
normal distribution is a multiple of the identity matrix, then isotropy holds, with
clusters having a circular shape. Otherwise, the process is anisotropic with elliptical
clusters.

Estimation of the parameters of a BVNPCP is particularly challenging due
to the substantial amount of latent data. The offspring relationships, number of
parents and locations of parents are all unknown. In this thesis, two approaches for

testing for and estimating anisotropy are developed and applied to a collection of

v



actual and simulated spatial point patterns. The cluster shape/scale parameter is
re-parameterized in terms of anisotropy strength, anisotropy direction, and cluster
size to allow for more transparent interpretation of results.

The first approach considers the BVNPCP as a finite mixture model and com-
bines EM algorithm parameter estimates, computed separately for different num-
bers of clusters, in a Bayesian model averaging type scheme. A “composite EM”
estimator of the cluster shape/scale parameter is thus constructed, along with an es-
timated asymptotic variance computed from a combination of observed information
matrices.

In the second approach, a reversible jump Markov chain Monte Carlo (RJM-
CMC) technique for 2-dimensional normal mixtures is developed. RJIMCMC ex-
tends the traditional MCMC capabilities by providing for transitions between differ-
ent parameter spaces, which are needed in our situation due to the unknown number
of clusters. A new convergence assessment method, applicable to any RIMCMC
situation in which distinct models can be identified, is designed and theoretically
justified. A “model” in our case is a given number of clusters, in other words, the
number of components in a mixture. OQutput analysis methods are also developed,
including anisotropy testing/estimation, model checking and inference for number
of clusters. The RIMCMC technique is flexible and has potential to apply to more

complicated spatial point processes, and also other mixture-related problems.
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CHAPTER 1
INTRODUCTION AND PRELIMINARIES

1.1 The Problem

Many naturally occurring phenomena give rise to data in the form of a set of
event locations, or a spatial point pattern. Examples include the dispersal of trees
in a forest and the locations of nuclei of a patch of biological cells. In the field of
spatial point pattern analysis, a pattern is typically described as random, reqular,
or aggregated. Aggregated patterns can arise from either some sort of clustering
mechanism or from environmental variation leading to high concentration of events
in certain areas. Of particular interest in this thesis is a specific kind of process
(defined formally in section 1.1.2) which generates aggregated patterns in the plane
through a clustering mechanism.

As Ripley (1977) asserts in his influential paper on modeling spatial point
patterns, in the theory of spatial point processes “one of the earliest and most
intensively studied classes of models is the class of cluster processes” (p. 174),
the most important subclass of which is the Neyman-Scott process (Neyman and
Scott, 1958). A Neyman-Scott process (see section 1.1.2) consists of two stages: a
set of parent events is distributed uniformly in a region, and offspring events are
dispersed around the parents. The resulting pattern is taken to be the collection
of all offspring locations, i.e., no information regarding parent events is recorded.
The parameters of such a process describe the average number of parents per unit

area, the distribution of the numbers of offspring per parent, and the dispersal of



offspring around their parents.

Despite the popularity of Neyman-Scott processes as models for point pat-
terns, “little is known on the statistical estimation of [their] parameters in the pla-
nar case” (Stoyan, 1992, p. 67). Estimation is particularly challenging because there
is a substantial amount of latent data underlying observed patterns: the number of
parents, locations of parents, and relationships between offspring are all unknown.
Furthermore, all methods known to the author assume that the dispersal of offspring
around parents is radially symmetric (i.e., isotropic). The assumption of isotropy
simplifies the mathematics considerably but is unrealistic for many situations.

The aim of this thesis is to develop tests of isotropy for a special type of
Neyman-Scott process, and to estimate the parameters describing offspring dis-
persal, as well as some of the latent data, without assuming isotropy. Two main
approaches are developed. The first (Chapter 3) combines results from several differ-
ent EM algorithm runs, while the second (Chapters 4 — 6) involves a reversible jump
Markov chain Monte Carlo (RIMCMC) scheme. Chapters 1 — 2 discuss necessary
preliminaries. Results for real and simulated data sets are presented in Chapter 7,

and a summary of new methods and scope for future research are given in Chapter 8.

1.1.1 Spatial Point Processes

Before presenting the specific model of interest, we define some basic terminol-
ogy of spatial point processes and patterns. Diggle (1983) provides a good overview
of spatial point pattern analysis. A spatial point pattern is a finite set of points
(events) in a spatial domain A whose locations are modeled as random variables.
A spatial point pattern is regarded as a partial realization of a spatial point process

(SPP), which is a random mechanism for generating a countable set of events in A.



The region A is taken to be a window of observation (for our purposes, a “study
region” in R?) and not the entire domain of the process.

Let N(B) denote the number of events in an arbitrary region B C A, |B| the
area of B, and dx an infinitesimal region containing a point x € A. The simplest
SPP to specify is a homogeneous Poisson process (HPP), in which the locations
of events are independently and identically distributed according to the uniform
distribution on A.

The intensity function A(-) of a SPP is defined as follows:

) = tim (S

|dx|—0 |dx]|
The second-order intensity function Ay(-) is defined similarly:
) E [N(dx)N(dy)])
Axy)= 1
2(X¥) = hm ( [dx||dy]

A minor variation of Ay(-) is the covariance density

((x,y) = Xa(x,y) = A(x)A(y),

which can be interpreted as the covariance between event counts per unit area in

two infinitesimal regions centered at x and y.

A process is called stationary if there are no underlying environmental factors
encouraging or discouraging the occurrence of events at particular locations, i.e.,
if all probabilistic statements about it in any region B C A are invariant under
arbitrary translations of B. For a stationary SPP, A(x) = A (in which case A is
interpreted as the expected number of events per unit area), and Ay (x,y) = X2(z)
where z = x —y. Stationarity is an important property of SPP’s that must hold for
many theoretical quantities to be well-defined; we assume throughout that all SPP’s
discussed are stationary.

Another property we will assume throughout is that of orderliness. A SPP is



orderly if multiple coincident events cannot occur, i.e.,

lim (P<N(dx)>1)> —0 VxecA,

|dx|—0 |dx]|

) E [N (dx)] B
i (P(N(dx) - 1)) =1 vxed

(Diggle, 1983). We further assume, as in Diggle (1983), that
E[N(dx)N(dy)]

=1 A. 1.1

(dxls0 (P (N(dx) = N(dy) = 1) X,y € (L)

A SPP is isotropic if symmetry exists in every way with regard to direction,

which implies that

i.e., if all probability statements about it in any region B C A are invariant under
arbitrary rotations of B. If a SPP contains any violation of this condition, then it
is defined as anisotropic. Note that under isotropy, A2(z) further reduces to Ax(t)
where ¢ = z'z. For a HPP, )\y(x,y) = A? and thus ((x,y) =0 Vx,y € A.

Ripley’s K-function (Ripley, 1976) is important for describing interaction be-

tween events at various ranges. It is defined as follows:
K(t)= % [# of (other) events within ¢ of a randomly chosen event] .
For a HPP, K (t) = mt*. Higher values indicate clustering, and lower values indicate
regularity. Under isotropy, stationarity, orderliness and (1.1), Ay(¢) and K (¢) have
a simple relationship (Diggle, 1983, p. 48):
Ao(t) = )\2(27rt)_1%.7((t).

Most methods in spatial point pattern analysis involve estimation of the in-
tensity, second-order intensity, and/or K-function. Thus it is useful in model fitting
to know the theoretical form of these quantities for different candidate point process
models.

Finally, a spatial point pattern is represented as the event locations {x, ...,

X, }, where n is the observed number of events in A.



1.1.2 The Poisson Cluster Process with Bivariate Nor-
mal Displacement (BVNPCP)

Spatial cluster processes have been developed in several different forms (Ney-
man and Scott, 1958, 1972; Strauss, 1975; Kelly and Ripley, 1976; Ripley, 1977;
Diggle, 1975, 1978, 1983). Neyman and Scott (1972) discuss several applications,
including spatial distribution of larvae on an experimental field and clustering of
galaxies. All instances involving analysis assume isotropy of the offspring dispersal
distribution. We will study a process with offspring dispersal determined by a com-
mon bivariate normal distribution with arbitrary covariance matrix, thus allowing
for anisotropy. First a more general cluster process, the Poisson cluster process, is
defined (Neyman and Scott, 1958; Diggle, 1983):
Definition 1.1.1 A Poisson cluster process (PCP) is given by the following 3 pos-

tulates:
PCP1 Parent events form a HPP in R? with intensity p.

PCP2 Each parent j produces a random number S; of offspring, realized indepen-

dently and identically for each parent according to a probability distribution

{ps,s=0,1,...}.

PCP3 The positions of the offspring relative to their parents are independently and

identically distributed in R? according to a common bivariate p.d.f. h(-).

Note that a PCP is stationary, since the parent process is a HPP. Our model
of interest is a special case of the PCP:
Definition 1.1.2 A bivariate normal Poisson cluster process (BVNPCP) is a PCP

with the following special distributions:



1. The cluster counts {S;} are distributed according to a common Poisson dis-

tribution with rate v.

2. The offspring dispersal distribution h(-) is bivariate normal with mean zero

and positive definite covariance matriz 3.

A realization of a BVNPCP is taken to be the collection of all offspring events
in a region A € R?. Perhaps an extra “Poisson” should be inserted into the name
since there are two Poisson distributions involved (one of the parent process and
the other of the cluster counts), but it is omitted for simplicity.

Of primary interest will be the estimation of 3. A BVNPCP with ¥ =
o?1, where I is the identity matrix and o2 any positive constant, will produce
circular clusters, whereas an arbitrary BVNPCP will produce elliptical clusters.
The correspondence between components of ¥ and the resulting cluster shape/scale
is developed in section 1.1.3. While the model of elliptically-shaped clusters may
not be general enough to convincingly represent a large class of natural processes,
it 1s a substantial generalization of the commonly used class of BVNPCP’s with
radially symmetric offspring dispersal (X = ¢I) (see, for example, Neyman and
Scott (1972); Diggle (1983); Lawson (1995a)).

The bivariate normal component of the BVNPCP is (barely, perhaps) math-
ematically simple enough to make approaches such as maximum likelihood estima-
tion and the EM algorithm analytically tractable. It seems a natural starting point,
especially in light of the concept of geometric anistropy (see section 1.1.3). The
RJMCMC approach (see Chapters 4 — 6), on the other hand, appears to offer the
exciting possibility of generalization to a much larger class of offspring dispersal dis-

tributions. Hence the choice of the BVNPCP for analysis in this thesis: it is general



enough to make an important addition to the class of useful point process models,

and simple enough to allow the comparison of different approaches for analysis.

1.1.3 Geometric Anisotropy

If a circle is “stretched,” the result is an ellipse (the term “stretch” referring
to the multiplication of the coordinates of any axis by a constant ¢ > 1). For a
spatial point process, a similar phenomenon can exist in the form of a force along
an axis. For example, the path of the sun may influence the locations of one plant
species relative to another through shading effects. A process which results from
the introduction of such a axial force to an isotropic process, effectively changing
the scale of a particular axis, is called geometrically anisotropic.

Geometric anisotropy is a popular model for anisotropy in the related field
of geostatistics (Ecker and Gelfand, 1997; Zimmerman, 1994, section 13.5.3). The
correlation between observations taken at different sites is taken to have elliptical
contours, due to some directional force (for example, prevailing wind direction in
Zimmerman (1994)). Although there are differences between the concept of geomet-
ric anisotropy in spatial point pattern analysis and that in geostatistics, a precedent
seems to be in place for its use.

In spatial point process terminology, geometric anisotropy is defined as follows:
Definition 1.1.3 A point process is geometrically anisotropic if the second-order
intensity function has elliptical contours, i.e.,

raxy) = A ([x—yyMx—y)]") (1.2)
for some positive definite matriz M with |M| =1,
in which case we use the term geometric second-order intensity and write

A2 (X,¥) = A (1), where t = [(x —y)M ™ (x — y)]

1/2



The matric M induces a Mahalanobis (non-Euclidean) distance measure. It is as-
sumed, for identifiability and without loss of generality, to have a determinant equal
to unity.

Note that under isotropy, (1.2) holds for M = I (the identity matrix), and the

contours are circular.

1.1.4  Geometric Anisotropy of the BVNPCP

The form of the second-order intensity function for a general PCP and a
BVNPCP are established in Theorems 1.1.7 and 1.1.8. First two useful lemmas are
presented, and the form of the (first-order) intensity function is derived.
Lemma 1.1.4 (Wald’s equation) Let X, X,,... be i.i.d. random variables with

finite mean. Let N be a non-negative integer-valued random variable independent

of {X1,Xs,...} and with finite mean. Then
E (ﬁ: X,») — B(N)E (X))
Proof: See Grimmet and Stir;i{er (1992, p. 396).
The following theorem is stated without proof in Diggle (1983, p. 55):
Theorem 1.1.5 The intensity of a PCP is given by: A\ = pv.

Proof: Consider a PCP observed in a finite region A. Let

n, = F(parentsin A)
Xi; = ™ location of offspring of i parent
x = location of arbitrary offspring from arbitrary parent

B = finite region in R



(Note: the dependence of these quantities on A is suppressed in the notation).

Then:
EN(B)] =

Hence A = pv.

lim, B[N(B)]

np

Z Z 1B(Xz’j)]
)

J=1

lim F
AR2

A—R2

lim {E(np)E
by Lemma 1.1.4, since n, and % 1p(x;;) ¢ are independent,
p 7=1 J

and {Ef’zl 1B(X,']')} are i.i.d., i =1,...,n,)

lim {E(n,)E(S)P(x € B)}

A—R2

(by Lemma 1.1.4, since S and 1p(x) are independent)

li AlvP B

Jim {plAlvP(x € B)}
: |B|

1 Aly—

L%{M|ﬂm

(boundary effects possibly disturbing P(x € B) become negligible
for the fixed region B as A — R?*; x is an independent
displacement of a uniformly distributed quantity, and thus
marginally distributed uniformly)

pv|B].
O

Lemma 1.1.6 Suppose f(-) is a p.d.f. defined on R? and continuous everywhere.

Then, for any fized ¢ € R? and D C R?, there exists B < oo such that

ﬁ/[)f(u—c)dug B.

Proof: Since f(-)is a p.d.f., we have [, f(u—c)du = 1. Since f(-) is continuous,

this clearly implies the existence of a constant B < oo such that f(u—c) < B Vu €
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2. Consequently,
|D|/f c)du < |D|/Bdu |D||D|B B. O

The following theorem is stated without proof in Ripley (1977, p. 174) and
Diggle (1983, p. 55):
Theorem 1.1.7 The second-order intensity function of a PCP with h(-) continuous
s given by:

Aa(x,y) = A+ pE{S(S — 1)} ha(x — y)
where
ha(x —y) = /2 h(x)h(x — z)dx,

the p.d.f. of the vector difference betwefn two offspring from the same parent.
Proof: See Appendix A.1.

Geometric anisotropy of the BVNPCP is established by the following theorem:
Theorem 1.1.8 (Geometric anisotropy of BVNPCP) The BVNPCP satisfies
geometric anisotropy with M = |§]|_%§] and

1 2
N (4) = Rl [ — -
anlt) = o)t v (2W)I2EI1/26XP< 4|2|%>

Proof: Let x and y represent locations of two arbitrary (distinct) offspring from

the same parent. Since x,y ~ N(0,X) and are independent, we have x —y ~
N(0,2X). Also, since S ~ Poiss(v), we have E[S(S —1)] = (v +1?) —v = 12
Thus, using Theorems 1.1.5 and 1.1.7, we have

Ma(x,¥) = N4 pE[S(S —1)]hy(x —y)

— 0 | e (3 ¥EE -y

1 2
T ae s X | ———7
(27) |23 |1/2 4|32

where t = [(x —y)M ™' (x — y)}l/2 and M = |2|"23.

= (pv)* +pv*

Finally, |M| = 1, thus satisfying the definition of )\“;’(M)(-). O
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Note that for the BVNPCP, )\g(M)(t) > A\ and decreases exponentially to \?
(the value for a HPP) in the limit as ¢ — oo. In other words, the covariance density
is strictly positive, being highest at ¢ = 0 and decreasing exponentially to zero with
the squared Mahalanobis distance between two locations.

So the anisotropy of a BVNPCP is completely determined by ¥. The cluster
shape/scale is governed by the elliptical contours of the N(0,3) density. In order to
describe the cluster shape/scale in more useful terminology, we can re-parameterize
Y in terms of an anisotropy parameterization. First we define the usual parameter-
ization, which we shall call the reqular parameterization:

Definition 1.1.9 (regular parameterization of ¥) Consider ¢ BVNPCP with
cluster shape/scale parameter X. Let x = (x1,x3) be the location of an offspring

relative to its parent. The regular parameterization of X, o = (011,092, 012), s

defined as follows:

011 012

3 = Var(x) =
012 022

where 011 = Var(xy), 099 = Var(asy), and 012 = Cov(ay, x3).
Definition 1.1.10 (anisotropy parameterization of ¥) Consider a BVNPCP
with cluster shape/scale parameter . Let B, , be the ellipse {X’E_IX = x5(1 — oz)},
where x € R? and Y3(1 — a) is the (1 — o)™ quantile of the x? distribution with
2 degrees of freedom. Let Is, be the interior of Ex .. Note that Ex , describes
the elliptical contours of N(0,X), and thaty ~ N(0,X) = P(y € Isn) =1 —«a
(Johnson and Wichern, 1992, Result 4.7).

The anisotropy parameterization of 3, (v, ¢, V), is defined as follows:

1. The anisotropy strength, v, is defined as the ratio of the major semi-azis and

minor semi-axis of Ex . (Note that v > 1).
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2. The anisotropy direction, ¢, is defined as the angle of inclination of the major
azis of Ex o, which is the (smaller) angle between the magjor azis and the
positive x-axis and lies in (—%, %]

3. The cluster size, ¥, is defined as the square root of the determinant of 3,
Area(Igya)

which is equal to (=)
NOTE: (v, ¢, %) does not depend on «, which is used only to demonstrate the mean-
ing of the magnitude of ¥. This particular choice for U is explained in the comments
following the proof of Fact 1.1.11.

For an isotropic BVNPCP with ¥ = ¢%I, note that v = 1, ¥ = ¢?, and ¢ is not
well-defined. The irrelevance of ¢ for isotropic BVNPCP’s and the constraint v > 1
render the anisotropy parameterization unsuitable for isotropy testing. However, it
1s still quite useful for estimation and descriptive purposes, especially for BVNPCP’s
with clear violations of isotropy.

The mathematical correspondence between 3 and the anisotropy parameter-
ization is established by the following:

Fact 1.1.11 Consider a BVNPCP with cluster shape/scale parameter 3. The two
parameterizations (011,092, 012) and (v, ¢, ¥), as defined in Definitions 1.1.9 and

1.1.10, are related as follows: )
1/2
o1+ 02+ [(011 — 022)° + 40%2]1/2]

o114 02 — [(011 — 022) + 40%2]1/2

0, ifo=0 and o1 > 099
o= g, if 012 =0 and 011 < 099

arctan < =201 1/2> , ifoe#0

o2 —011 —[(011 —022)2+40122]

2 1/2
\I/ = [0’110’22 — 0'12]

and
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1
o1 =" (— sin® ¢ 4 7 cos? qb)
v
L .2
099 = ¥ | —cos” @ + vysin” ¢
v

1
o1 =—VU (; — ’y) sin ¢ cos ¢

1/2

Proof: First, U = [0y1095 — 012%]/" simply by definition. Write X! as

B i1 212 1 022 —012
»l = = . (1.3)
. . 011022 — 012 .
112 122 012 O11

Let x = (21, 22)" € R? and consider the ellipse

E={x'Y""x=1} = {in1a] + 2ow12 + in2a5 = 1} . (1.4)
Now define
a = major semi-axis of F
b = minor semi-axis of F
¢ = angle of inclination of major axis of F

Then E can also be written as (Batschelet, 1981, equation 13.3.2):
cos? sin® . 1 1
E = {( a2¢+ bqu)xf+2¢os¢sm¢<?—b—2>x1x2—|—

sinf¢  cos? o s
(e oo ) i

The relationship between (a, b, ¢) and (711, 122, 712) can be determined by equat-

ing the coefficients in 1.4 and 1.5. The mapping (a,b, ¢) — (111,192, 012) is trivial,

and the form of (411,22, 712) — (a,b, @) is derived by Batschelet (1981, section 13.5):

V2

[@'H Finy — [(i11 — in2)? + 4i2,
V2

[in Figa + [(111 — 122)% + 4@?2]1/2] v

a —

]1/2] 1/2

b=
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0, if 110 = 0 and 111 < 199

qb = %, if i12 =0 and ill Z i22

arctan ( [l =2 1/2> , i #0
211 22—

a1 —i22)2+4i%2]

Finally, the result is obtained by using the definition v = ¢ and re-writing in

terms of (011, 022, 012) as determined by (1.3). O
Note that (via simple substitution) the ellipse E can also be written in the

following equivalent form in terms of (v, ¢, ¥):

| 1
E = {(- cos” ¢ + v sin’ qb) i +2cos ¢sin g (— —7) T12yF
5 g

1
(— sin? ¢ + v cos® qb) T3 = \I/}
v

= (XM 'x =17}
where |M| =1 and M involves only v and ¢,

thus justifying the representation chosen for ¥ in Definition 1.1.10.

1.1.5 Potential Applications in Ecology

Wright (1946) introduced the idea of a genetic neighborhood in population
ecology as the “area from which the parents of central individuals may be treated
as if drawn at random” (Crawford, 1984, p. 147). See Wright (1969) for a detailed
explanation of the theory. The dispersal of pollen and seeds (combined) from parent
plants is assumed to follow a bivariate normal distribution with covariance matrix
3 = 02,1, where 0,4 is estimated from measurements of pollen and seed dispersal
distances, ignoring direction. The genetic neighborhood is then defined as the circle
of radius 20,4 (note that approximately 86.5% of observations from N(0, a2, I)
will lie in this circle). Many important ecological inferences are based on the con-

cept of genetic neighborhoods. For example, genetic differentiation between two
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populations is considered a function of the number of neighborhood diameters that
separate them in space.

However, strong directionality of pollen and seed dispersal has been observed
in nature. Directional migration patterns are quite common and are important in
affecting gene flow, extinction and recolonization dynamics in natural populations.
Crawford (1984, p. 157) expresses doubts about the neighborhood model:

The basic model involves a number of assumptions that are unlikely to
be true in nature. The most important are that dispersal distributions
are normal, that these distributions have zero means and that they ade-
quately reflect the form of gene dispersal between parents and offspring.

He also states that the most frequently encountered deviation from the assumed
dispersal distribution is that of leptokurtosis, meaning an extended tail and excess
of observations near the mean. Skewed dispersal distributions are often observed;
directional behavior of pollinators and prevailing wind direction are cited as con-
tributors to this effect.

Many adjustments for the effects of leptokurtosis have been proposed (Craw-
ford, 1984), but all involve only adjustment of o,pq, leaving all other assumptions
intact (most notably the assumption of radial symmetry). Methods to characterize
the directionality of dispersal distributions could potentially produce an improved

model for the genetic neighborhood.

1.2 Description of Datasets Used
One observed spatial point pattern and and a battery of twelve simulated
patterns are analyzed in Chapter 7 using the techniques developed in Chapters 3 —

6. In this section we describe the patterns and the reasons for our choices.
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1.2.1 Redwood Seedling Locations

Strauss (1975) studied the location of Redwood seedlings in an experimental
plot. He states (p. 473) “it was felt that the seedlings would be scattered fairly
randomly, except that a number of tight clusters would form around some of the
redwood tree stumps present in the plot.” Figure 1.1 shows the locations of the
seedlings (with no information about the stumps). The diagonal line represents a
discontinuity in the soil, below which very few Redwood stumps were found. Thus
the clustering behavior is expected to be quite different in the two regions. The
portion used for analysis in this thesis is indicated by a solid boundary and will
henceforth be referred to as the “Redwood data.” For convenience in analysis, the
coordinate scale is chosen to produce a total area of 1.

Ripley (1977) extracts a square region (marked by dashed lines in Figure 1.1)
mainly within the area of supposed clustering, citing computational convenience as
his justification. He and other authors (Diggle, 1983; Lawson, 1993) have analyzed
this square region as an isotropic PCP, leading to varied conclusions (see section 1.3).

The supposed clusters in the Redwood plot appear to exhibit strong direction-
ality, suggesting a common northeast-southwest orientation. No reported analyses
of this pattern account for or assess this directionality. Although there is no ev-
idence suggesting that elliptical cluster shapes are reasonable, a visual inspection

warrants the possibility. The Redwood data is thus analyzed as a BVNPCP.

1.2.2  Simulated Patterns
To enable a more thorough study of the performance of the methods devel-
oped, twelve simulated spatial point patterns are used for analysis. The number of

such patterns is limited by constraints on computation time. Patterns are generated
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Redwood seedling locations

Figure 1.1: Location of Redwood seedlings in an experimental plot. Regions are
marked according to use in this thesis (solid) and in other papers (dashed and

dotted).
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in the unit square according to a BVNPCP, conditional on number of clusters (k)
and total number of offspring (n, set to 100), except that placement of parents is
restricted to [0.025,0.975] x [0.025,0.975]. (Note: terminology for such conditioning
is given by Definition 3.1.1, and the equivalent specification given by Definition 3.1.3
is used for the actual simulation). The restriction on parent (cluster center) place-
ment is used to reduce edge effects, since the robustness of methods to boundary
effects is not studied.

Three factors are varied to generate the patterns: v (anisotropy strength, set
to 1, 1.5 or 3), k (number of clusters, set to 7 or 14) and ¥ (cluster size, set to
.003 for k = 7 and .0015 for k = 14). Varying v allows the study of different de-
grees of anisotropy, while varying k& and ¥ allows the analysis of more and smaller

clusters vs. fewer and larger clusters. The parameter ¢ (anisotropy direction) is

T
=

set to 30° for all anisotropic patterns. The use of a common value simplifies
interpretation of results across patterns. Some methods we will develop later in the
thesis analyze the variance difference 017 — 092 and covariance o5 separately. This
particular choice of ¢ gives comparable (although not necessarily identical) impor-
tance to each in detecting departures from isotropy. Two replications of each factor
combination are generated. To avoid selection bias, the first two such replications
of each combination were accepted, regardless of the apparent adherence (or lack
thereof) to model parameters.
The naming convention for the simulated BVNPCP realizations identify whether

the underlying model is isotropic (“I”) or anisotropic (“Al”), the value of v in case
of anisotropy (“1.5” or “3”), the value of k (“k7” or “k14”), and the replication (“a”

or “b”). Table 1.1 shows the values of relevant quantities for the twelve simulated

patterns, and Figures 1.2 — 1.7 show plots of the patterns.
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Name ~ k W o1 99 o132
[-k7-a 1 7 0.003 0.003 0.003 0
I-k7-b 1 7 0.003 0.003 0.003 0
I-k14-a 1 14 0.0015 0.0015 0.0015 0
[-k14-b 1 14 0.0015 0.0015 0.0015 0

AL-1.5-k7-a 1.5 7 0.003 0.003875 0.002625 0.001083
AI-1.5-k7-b 1.5 7 0.003 0.003875 0.002625 0.001083
Al-1.5-k14-a 1.5 14 0.0015 0.001938 0.001312 0.0005413
Al-1.5-k14-b 1.5 14 0.0015 0.001938 0.001312 0.0005413
AIL-3-k7-a 3 7 0.003 0.007 0.003 0.003464
AL-3-k7-b 3 7 0.003 0.007 0.003 0.003464
Al-3-k14-a 3 14 0.0015  0.0035 0.0015 0.001732

Al-3-k14-b 3 14 0.0015  0.0035 0.0015 0.001732

Table 1.1: Simulated point patterns: values of BVNPCP pa-
rameters and realized latent data (to 4 significant digits). For
all patterns, n = 100 and ¢ = Z.



I-k7-a: offspring locations
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I-k7-b: offspring locations
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Figure 1.2: Simulated I-k7 patterns.

I-k14-a: offspring locations

I-k14-b: offspring locations
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Figure 1.3: Simulated I-k14 patterns.
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Al-1.5-k7-a: offspring locations Al-1.5-k7-b: offspring locations
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Figure 1.4: Simulated AI-1.5-k7 patterns.

Al-1.5-k14-a: offspring locations Al-1.5-k14-b: offspring locations
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Figure 1.5: Simulated AI-1.5-k14 patterns.
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Figure 1.6: Simulated AI-3-k7 patterns.
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Figure 1.7: Simulated AI-3-k14 patterns.
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1.3 Previous Approaches

To the author’s knowledge, there are currently no other methods available to
test 1sotropy of the offspring dispersal distribution of a PCP. Estimation even for
isotropic PCP’s has been a notoriously difficult problem with no clearly adequate
solution, mostly because of the substantial amount of latent data (especially the
unknown number of parents occurring in the region).

Furthermore, there is relatively little consideration of anisotropy at all in the
spatial point pattern literature. There are several useful directional extensions of
commonly used descriptive statistics of spatial point processes. However, in rela-
tively few cases are the theoretical values known for commonly used models, and
none have known distributions or standard error computations. Ohser and Stoyan
(1981) define a version of the K-function which tallies the occurrence of other events
within a sector whose origin is at an event. Stoyan and Stoyan (1994) derive an
edge-corrected (i.e., including a correction for boundary effects) estimator for a
generalized version which counts the occurrence of events in an arbitrarily shaped
region around an event. Stoyan (1991) develops an estimator )/\\2(7“, @), a kernel es-
timator of the second-order intensity as a function of distance r and direction ¢.
Ko6nig and Schmidt (1992) construct an estimator of the distribution of direction
between one event and another arbitrary event located with a given distance range
from the first. Mugglestone and Renshaw (1996a,b) use spectral analysis to char-
acterize anisotropic structure in a spatial pattern. Applications of these descriptive
methods have been found mostly in the stereology and microscopy literature (see

Stoyan and Benes, 1991; Benes et al., 1989; Carvajal-Gonzalez et al., 1989; Konig
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and Ohser, 1988; Cruz-Orive et al., 1985).

Strauss (1975) developed a model for fixed-range interactions in spatial point
processes (in which events are allowed to encourage or discourage the occurrence
of other events within a certain fixed radius). He fit this model to the Redwood
data (using the same region as in this thesis) and concluded there was substantial
evidence of clustering. The interpretation of his “clustering tendency” parameter

in relation to quantities considered in this thesis is unclear.

1.3.1 Least Squares Estimation for Isotropic PCP’s

A popular method of parameter estimation for spatial point patterns is that
of least-squares estimation (Diggle, 1983, Chapter 5). The essential idea is as fol-
lows: First a measure of some property of the point process (usually a function
of distance t) is chosen. Examples include Ripley’s K (), the distribution function
of nearest-neighbor distances (F(t)), the distribution function of point-to-nearest-
event distances (G(t)), and scaled versions of Ay(¢) (Baudin, 1981; Stoyan, 1992).
Say a measure M(t) is chosen. The theoretical value M(¢;6) for different values of
the unknown parameters (6) is compared to an estimate ]\/Z(t) from the data, for
various 6 and t. A discrepancy function D(6) is defined as

D(6) = /to {31} - (ar0)y] ae

with “tuning constants” ¢y and Oc. Then 4 is estimated as the value § which minimizes
D(#). Diggle (1983) uses a quasi-Newton optimization procedure. A drawback of
the method is the difficulty in choosing proper values for the tuning constants.

Ripley (1977) carries out a similar procedure with K(¢) for Strauss’s fixed-
range interaction model (using the square region from the lower-lefthand corner of

the Redwood plot in Figure 1.1, scaled to give an area of 1) and, instead of using least
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squares, tries a range of different parameter values and concludes that none provides
an adequate fit. Diggle (1983) models the same region as a BVNPCP with ¥ = ¢I.
He uses K (t) with ¢t = 0.25 and ¢ = 0.25 to yield (p, ) = (25.6,0.042), implying

(surprisingly) the estimated presence of 25.6 clusters for only 62 observations.

1.3.2 MCMC Analysis

Granville and Smith (1995) consider a variant of the BVNPCP in which the
cluster count distribution is geometric rather than Poisson. The cluster shape/scale
parameter ¥ is kept arbitrary. They develop a dimension-changing MCMC sam-
pler based on a spatial birth-and-death process (Geyer and Mpgller, 1994) capable
of modeling the number of clusters. However, they do not perform any convergence
assessment. A similar method is suggested, although not developed, by Baddeley
and van Lieshout (1993) for general PCP’s. Lawson (1995a) develops a similar
MCMC sampler for two classes of isotropic PCP’s, simply mentioning that conver-
gence assessment method is “based on Q-Q plots of the marginal distributions [of
the parameters].” Lawson (1995b) models a variant of the isotropic BVNPCP in
which the cluster shape/scale parameter is allowed to vary as a function of clus-
ter center location, using a similar MCMC sampler and convergence assessment
method. In all of these cases, output analysis is essentially restricted to the display
of the posterior density estimate and reported modal values, and no details are given
to allow one to reproduce the sampling algorithm. It is not clear whether any of
the chains have satisfactory mixing properties, as rigorous convergence assessment
is not performed.

Lawson (1993) mentions in a brief discussion contribution that he models the

same Redwood data set used in Ripley (1977) and Diggle (1983) as a PCP with
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a “‘nearest parent’ approximation to h(-)” (not defined), using a Gibbs sampler
(not explained) and Q-Q plots to assess convergence. He reports modal estimates
of k = 16 clusters and o? = 0.00037 (which is not defined and may or may not
correspond to Diggle’s o).

These MCMC methods, most of which are based on the spatial birth-and-
death process, can be considered precursors to the more versatile reversible jump
Markov chain Monte Carlo technique (discussed in Chapters 4 — 6) developed by
Green (1995).
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CHAPTER 2
ATTEMPTS AT MAXIMUM LIKELIHOOD ESTIMATION

Consider the BVNPCP observed in a region A € #?. The parameters of this
process can be represented as (see Definitions 1.1.1, 1.1.2 and 1.1.9)
S ={p, v, X} ={p,v,011,09,012}.
The observed data are
Y = {locations of offspring in A} = (yi1,...,y.), wherey, = (vi1,yi2)’. (2.1)
The latent data can be expressed as follows:

E = #(parentsin A) (2.2)

¢ = {parent locations} = (pq,..., )", where p, = (i1, piz)’  (2.3)

Z = {“allocations”} =

1, if offspring j belongs to parent :
where z;, = (2.4)

0, otherwise

A CAUTIONARY NOTE: The above definitions are not entirely self-consistent
because it is possible for parents in A to produce offspring outside A, and for parents
outside A to produce offspring inside A. The author has not found a satisfactory
remedy to account for this, and thus we will proceed as though the entire BVNPCP
occurs within A. Estimation of intensity is not of concern in the thesis. As long
as the study region is chosen carefully so that there is not an excess of clusters

occurring on the boundary, this simplifying assumption is expected to have little
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impact on the results. The Redwood pattern appears to meet this condition, and for
the simulated patterns, parents were generated in an interior region (encompassing
about 90% of the area). Further research is needed to adequately account for cases
in which a significant number of clusters occur on the boundary of the study region.

The latent data component Z can also be referred to as “cluster memberships”
or “parentage identifiers.” The cluster counts are represented as the column sums
of Z:

s = {cluster counts} = (Sy,...,S%)’, where S; = 2?21 Zji.

Note that the “sample size” (n, the total number of offspring), is random.
However, we proceed as is standard in statistical inference for spatial point processes
and condition on the observed sample size (see e.g. Ripley (1977, 1981, 1988); Diggle
(1983); Baddeley and Mgller (1989)).

For the rest of this chapter (and also for use throughout the thesis), define the
generic notation p(-) to denote a likelihood, p.d.f. or p.m.f., the meaning in each
case being defined by the context. Also define the notation ¢ ~ b to denote that
a 1s distributed according to the b distribution. Let the observed-data likelihood
be represented as p(Y|®,n). It is possible to express this likelihood in closed form
by writing the complete-data likelihood p(Y,Z, p, k|®,n) and integrating over the
latent data. We can write the complete-data likelihood as:

P(Y.Z, 1, K%, 1) = p(Y|Z i, b, B, m)p(Zlga, 5., @, m)pl s, s|E, B, n)p(k |, ).
(2.5)
At this point a useful lemma is presented:
Lemma 2.1 Let Xy,...,X,, be random variables, with X = (X1,...,Xn). The
following two statements are equivalent:

Xy, ..., X are independent and identically distributed as Poiss(\) (2.6)
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and
m m 1
X, ~ Poiss(m\) and X Xi=nb ~Multn,—1 2,
ZZ:; oiss(mA) an H; n} 1 (n — ) (2.7)
Proof:
(2.6) = (2.7):

Assume (2.6). Then by Theorem 5.1 of Taylor and Karlin (1994), we have
ZX,' ~ Poiss(mA).

=1

Also, .
! (X 2 ") o [—@; ;M] ) (lef Xm> <%> |
and thus (2.7) holds.

(2.7) = (2.6):

Assume (2.7). Then

pX) = p(Xin)

I:l

- (o ) (B e

1 A exp(—))

——

=1

Thus Xi,...,X,, are independent and identically distributed as Poiss(A). O

Each factor on the right-hand-side of (2.5) is derived in what follows. First

note that
p(nlk, ®)p(k|P)

p(n|®)
Now n|{k,®} ~ Poiss(kv) (by Lemma 2.1) and k|® ~ Poiss(p|A|) (Diggle, 1983,

p(k|(I),n) =

(2.8)

section 4.2), and so we have

p(n|k,®) = (kv)" ezf)(—ky)

(plAD* exp(—p|A])
k! '

p(k|®) =
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The denominator of (2.8) is computed as:

pn|®) = P ZSF“’)
— ip(is,:n k:g,@)P(kqu@)

(1/ exp {—[1 —eXp(—V)]P|A|}> '

n!

> Alexp(—v)]? exp {—p| Al exp(—v
;qn{[/ﬂ |exp(—v)] ;)!{ plA|exp( )}}
- (Lol el e,

where X ~ Poiss (p|A|exp(—v))

n

_ <1/”exp{ [1 — exp(— '0|A|}>Zana (| Al exp(—))

n!

J=1
1, ifj=1lorj=n
where a, ; =
J(an-14) + @n-1,-1, otherwise,

where the last equality follows from an induction argument (shown in Appendix A.2).
Next observe that (g, ..., p)|{k, ®,n} are independent and distributed uni-
formly on A, and s|/{k,®,n} ~ Mult (n,%l) (by Lemma 2.1), and g and s are
independent, so that
plp,s|k, @, n) = ﬁ(sl-é-skﬁ_n‘ (2.9)
Given the offspring counts, all possible allocations satisfying the offspring
counts are clearly equally likely (marginally, not taking into account the offspring
locations). Denote the set of all possible allocations as 2(s). The cardinality of
Q(s) is given by
o= (5" 5 ) (2.10)

and so

(2.11)
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Finally, since {y1,...,yn} are independent we have
p(Y|Z, . ke, @, n) HH Flyi i D)7 (2.12)
=1 j=1

where f(x;01,80,) denotes the density of N(64,80).
Now that the form of the complete-data likelihood has been determined, it

can be integrated to produce the observed-data likelihood:

pylD,n) = /---/p<Y,z,u,k|<I>,n> dps 42

— Z Z Z// / p(Y,Z, ,k|®,n) dp  (2.13)

k=0 s€A,(k) ZeQ(s
where An(k) = all possible values of s given k and n  (2.14)

and (s) is as defined in (2.10).

The integral over p in (2.13) can be reduced (shown in Appendix A.3) to a
product of terms of the form ¢P(X € A), where ¢ is a simple algebraic expression
and X has a bivariate normal distribution with easily computable parameters. Thus,
the integral can be calculated numerically using readily available techniques. For
example, if A is a square region, then the integral is calculated by the function
pmvnorm in S-Plus version 4.5 for Windows (Mathsoft, Inc.).

The summation over k in (2.13) can be justifiably truncated, for example at
n (otherwise it would not make sense to model the data as a cluster process in the
first place). This reduces the observed-data likelihood to the summation of a finite
number of computable terms, which can thus be maximized (in principle, at least)
by an optimization procedure such as the Nelder-Mead simplex method (see Nelder
and Mead (1965), Olsson and Nelson (1975) and Press, Flannery, Teukolsky, and
Vetterling (1988, section 10.4)).

The summations over s and Z, however, pose serious problems for even mo-

derately-sized data sets. The number of terms grows astronomically with n. The
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cardinality of A, (k) is difficult to calculate, but it can be shown by a simple combi-
natorial argument that the number of ways to choose a collection of non-zero counts
is (Zj), and so # (A, (k)) > (:j) Expressions describing the exact number of such

terms are unwieldy, but it will suffice to demonstrate that for £ = 2 and n odd, we

have

DD IREEED
SEAR(2) ZeQ(s)
This result follows from the fact that there are 2" ways to allocate n offspring to 2

ordered clusters, and each such possibility has a redundant duplicate (for n odd, at
least) since order should not be counted. Thus, it would appear that computation
of even one likelihood value (using a truncation of k) for a moderately-sized data
set is not possible anytime in this millenium.

Obviously some allocations are highly unlikely and could be justifiably dis-
carded. However, determining which allocations to discard would require a separate
analysis altogether. If such an effort is to be undertaken, there are more suitable
methods to consider, most notably the EM algorithm and Markov chain Monte
Carlo.

For illustrative purposes, we implement a Nelder-Mead simplex (NMS) algo-
rithm to find a local maximum of the observed-data likelihood (2.13) for a very
simple pattern, shown in Figure 2.1. This pattern is a realization of a BVNPCP
on the unit square conditional on the number of parent events, parent locations,
and cluster counts. The true values of the parameters and other quantities used to
create the pattern are: n =14, k=2, 5, =7, 5 =7,v =3, ¥ = .0015, ¢ = %,
@, = (.33,.67), and p, = (.67,.33)".

Following the guidelines of Olsson and Nelson (1975) for bounded parameters,

we transform ® = {p, v, 011, 092, 012} to {log p,log v,log o11,1log 092, 22(p12)}, where
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Small test pattern: offspring locations

Figure 2.1: Small test pattern to demonstrate Nelder-Mead simplex MLE procedure.

p12 is the correlation and z(p;q) is defined in Definition 3.5.1, for use in the actual
algorithm. The starting simplex (shown in Table 2.1, in a more directly interpretable
parameterization) is chosen to be very close to the true value of the parameter vector
(to represent a “best case” scenario). Only the values {1,2,3,4} are used for k in
each likelihood computation. The clusters in the test pattern (Figure 2.1) were
intentionally located far from the boundary so that the term Hle (P(x, € A))69 in
(2.13) (see equation (A.4) in Appendix A.3) is extremely close to 1 and need not
be computed at each iteration.

The NMS algorithm was run until the relative difference between likelihood
values at successive iterations was less than 0.0001 (i.e., with a fractional tolerance
of 0.0001). The simplex converged in 84 iterations and required 18.27 hours of
computation time. Virtually all of the compuatation time was spent in calculation

of the likelihood. Table 2.2 shows the resulting parameter estimates, along with
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P v 011 022 P12

3 & 0.003 0.002 0.75
2 8 0.003 0.002 0.75
3 7 0.003 0.002 0.75
3 & 0.002 0.002 0.75
3 & 0.003 0.003 0.75
3 8 0.003 0.002 0.85

Table 2.1: Starting simplex
used in NMS algorithm for

small test pattern.

true values and also values computed separately using the true allocations Z and
the usual sample correlation coefficient and sample variance. The source code was
written in C++4, and compiled and run using the same type of computer as discussed

at the end of section 7.1.

P v o1 022 P12
NMS 2.29651 7.65753 0.003154 0.002622 0.827185
Truth (k=2) (S1=9,=7) 0.0025 0.0025 0.8

Estimates given Z 0.003150 0.002464 0.824253

Table 2.2: Parameter estimates from NMS algorithm implemented for small test
pattern, along with true values and estimates computed using knowledge of Z.

The NMS estimates of o1, 099 and pyy are very close to the estimates obtained

with knowledge of Z. This is not too surprising since the pattern has clear structure,
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and the NMS starting values are close to the true values. Experimentation with
other starting simplex values suggests that the algorithm converges to many different

local maxima, and many more iterations of the algorithm are usually required.
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CHAPTER 3
COMPOSITE EM ANALYSIS

3.1 Mixture Model Specification of the BVNN-
PCP

Define a conditional version of the bivariate normal Poisson cluster process
(see Definition 1.1.2) as follows:
Definition 3.1.1 (BVNPCP(A,k,n)) A BVNPCP(A,k,n) with parameter 3
is defined as a BVNPCP with cluster shape/scale parameter X occurring entirely
within a region A, conditional on the realized values of the number of clusters (k)
and total number of offspring (n).
Theorem 3.1.2 The BVNPCP(A,k,n) is completely determined by the following

three postulates:

C1 The k parent events are independently distributed uniformly on A, i.e.,

oy by ~ U(A) and are independent.

C2 Fach parent j produces a random number S; of offspring, where

1
Sl,...,Sk ~ Mult (n,21> .

C3 The positions of the offspring relative to their parents are independently and

identically distributed as N(0,3), conditional on being confined to A.

Proof: C1 follows from Definition 1.1.2 and the definition of a HPP (see postulate
PP2 in section 4.2 of Diggle (1983)). C3 follows from Definition 1.1.2, and C2

follows from Lemma 2.1. O
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Note that the parameters p and v of the BVNPCP become irrelevant (and
can therefore be treated as absent) in the BVNPCP(A,k,n). Next define the
mizture model specification of the BVNPCP(A, k, n) (terminology which is justified
by Theorem 3.1.4) as follows:

Definition 3.1.3 (mixture model specification of BVNPCP(A, k,n) ) The mix-
ture model specification of the BVNPCP(A, k,n) is defined by the following three

postulates:

MM1 Fk parent events (also called components) are independently distributed uni-

formly on A, with locations given by

MM2 Let Z be defined as in (2.4) and z; denote the j*® row of Z. Define the
notation “z; = q” to represent
1, ifi=q

0, otherwise.

Z; =
Allocations are determined independently as
iid. 1
Z1y. .. % X Mult (1, —1) ,
k
i.e.

1
Z1,...,Z, are independent with P(z; = q) = z Vge {1,...,k}.
MM3 The positions of the offspring relative to their parents (parentage being de-

termined by Z) are independently and identically distributed as N(0,3X), con-

ditional on being confined to A.

Theorem 3.1.4 The BVNPCP(A, k,n) and the mizture model specification of the
BVNPCP(A, k,n) (Definitions 3.1.1 and 3.1.3) are equivalent.
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Proof: Let A, k, and n be given. Both specifications possess the same parameter
(X) with the same meaning. The random quantities g, Z and Y completely de-
termine either specification, so it will suffice to prove that their joint distribution
is equivalent for the two specifications. By definition, Z and p are independent (of
each other and of ¥), and the distributions of g and Y|{g,Z, X} the same (the
latter given by (2.12)), for both specifications. Thus all that remains is to establish
agreement on the distribution of Z. Using notation developed in Definition 3.1.3,

we have for the mixture model specification

p(Z) = HP(Zj =q) = kl—n

for any (qi1,...,q,) satisfying ¢; € {1,...,k} for each j € {1,...,k},

i.e., for any Z.

For the BVNPCP(A, k,n) we have

p(Z) = p(Z,54,...,5%)

and thus the distributions of Z are equivalent, completing the proof. [

Thus the term “BVNPCP(A, k,n)” will be used, and terminology for mixture
models (e.g. “components” and “allocations”) will be used when appropriate.
NOTE: Observe that the offspring dispersal distribution of the BVNPCP(A, k, n) is
technically a truncated bivariate normal, with the truncation depending on g. At-
tempts to account for this would render the model intractable for the types of

analyses to be developed. Thus, proceeding as explained in the cautionary note
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on page 27, we ignore the truncation and model a common bivariate normal off-
spring dispersal distribution. As discussed there, the effect of this simplification is
expected to be minor, in light of careful choice of data sets used for analysis.

Now we again turn our attention to the problem of estimating 3 for a BVN-
PCP observed on a region A. Likelihood forms relevant for analysis are derived in
section 3.2. Sections 3.3 and 3.4 describe estimation of 3 for a BVNPCP( A, k, n) using
the EM algorithm. In section 3.5, a new technique is developed to combine 3
estimates from several different BVNPCP(A, k,n)’s to arrive at a composite EM
estimate of ¥, along with an associated variance estimate. First, the likelihoods

associated with the technique are developed.

3.2 Likelihoods Associated with Mixture Mod-
els

Consider the BVNPCP(A, k,n) developed in section 3.1. We proceed as is
standard in the analysis of mixture models and treat g as an unknown parameter
instead of a random quantity. The parameters to be estimated are thus 3 and g,
where p is treated as a nuisance parameter. Sometimes a mixture model analysis
also involves estimation of mizing proportions, but in our case the mixing propor-
tions are determined by the BVNPCP(A, k, n) model assumptions to be equal (with
value %, a result of the common Poisson distribution of cluster counts). The nota-
tion to follow represents conditioning on k& but suppresses dependence on n and A.

The distribution of the observed data Y given the parameters and latent data is

called the classification likelthood and is given by

p(Y Ik p2.2) = T]f (vl %)
j=1
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3

||:?r

YJ“I’U Zﬂ (31)

where f(-|p;,2) denotes the density of N( )

The distribution of the observed and latent data (Y and Z) given the param-
eters is called the complete-data likelthood and is given as

p(Y, 2k, %) = p(Y |k, 5, Z)p(Z 1k, p, X)
no k
= TITT e 2 (32

where f(-|p;,2) denotes the density of ]<7:(1p,::,1§])

Finally, the marginal distribution of the observed data only given the param-
eters is called the mizture likelihood, or observed-data likelthood, and is given by

p(Y|k,,},,2) = Hp(YJ|k7”72

= H /p(YJvzj |k7’1’72)dzj:|
Jj=1r

n

= 11| [ o330, 1) 02

~.
Il
-

k
= ZP(YJ|]€7“727ZJ:i)P(Zj:Hk)]
| =1

[ k
1
= 22 filn, =
=1

1L

= T fwl ) (33)

7=1 1=1

where f(-|p;, 2) denotes the density of N(p;,3).
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3.3 An EM Algorithm Clustering Approach for
Fixed Number of Clusters

The EM algorithm (Dempster, Laird, and Rubin, 1977) is a useful approach
to maximum likelihood estimation in the presence of missing (latent) data. Unfor-
tunately, the EM algorithm for normal mixture models (McLachlan and Basford,
1988) cannot be used directly to estimate the parameters of a BVNPCP because
the dimension of the parameter space varies with the unknown realized value of k
(number of clusters). However, the parameters of a BVNPCP(A, k,n) can be esti-
mated. Then parameter estimates and associated variance estimates for different %
can be combined, using estimated probabilities that each k is the truth, to form a
composite EM estimate and associated variance estimate of the parameters of the
underlying BVNPCP. In this section we describe the EM algorithm approach for
fixed k. The asymptotic covariance of the estimators is derived in section 3.4, and
the technique to combine estimates is developed in section 3.5.

Let the notation L (0; X) denote the log-likelihood function for parameters 6
and data (observed and/or latent) X. The EM algorithm is a technique to utilize
the complete-data likelihood to find a solution to the equation

TS E)L (1. 35 Y, k) =0, (3.4)
thus obtaining a local maximum of the observed-data (mixture) likelihood (under
mild regularity conditions, which are satisfied in our case: see McLachlan and Bas-
ford (1988, section 1.6), and for a more general discussion of convergence properties,
Wu (1983)). The approach is usually applied when the form of the observed-data
likelihood is intractable; in our case, it is easy to express but difficult to maximize

by other techniques. McLachlan and Basford (1988, section 1.6) discuss drawbacks

of other methods such as Newton-Raphson. The solution to (3.4) is not necessarily
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the maximum likelihood estimate (MLE). However, in the case of normal mixture
models with common covariance matrix (our situation), the MLE exists and is
strongly consistent (i.e., converges to the true value almost surely with increasing
sample size) (McLachlan and Basford, 1988, section 2.2). Fraley and Raftery (1998)
promote a method (using agglomerative hierarchical clustering, which we describe
later in this section) to produce good starting values for the EM algorithm which
improve the chances of the solution to (3.4) providing a global maximum. Perhaps
a more reliable strategy would be to try many different starting values and compare
the mixture likelihood values (since its closed form is available in our case) of the so-
lutions, but construction of a good battery of starting values is a difficult endeavor.
We choose the approach of Fraley and Raftery (1998). Regardless, Lehmann (1983,
chapter 6) establishes that many desirable properties (such as asymptotic efficiency)
hold for any solution to (3.4) under mild regularity conditions, which are not rigor-
ously verified in this thesis but are suspected to hold. Fraley and Raftery (1998) and
other authors treat the solution to (3.4) as an MLE, and we follow this precedent.

The EM algorithm consists of two steps, the FE-step and M-step. First the
algorithm is initialized with starting values for the latent data (in our case, Z). In
the M-step, the complete-data log-likelihood L (g, 3; Y, Z, k) is maximized over the
parameters (p,3) conditional on the current values of the latent data. In the E-step,
the expectation of L (p, X;Y,Z, k) over the latent data is computed, conditional
on the current values of the parameters. The M-step and E-step are alternated
repeatedly until the value of L (p, 3;Y,Z, k) (evaluated at the estimated parame-
ter values and latent data values) converges, as determined by relative differences
between iterations.

Starting values for the EM algorithm are obtained as suggested in Fraley and
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Raftery (1998) via an agglomerative hierarchical clustering technique, a classifica-
tion analysis method (see Gordon (1981, section 3.3.1)). The goal is to determine
an optimal set of allocations Z (“optimal” in the sense that the classification like-
lihood is maximized over a restricted but specially chosen subspace of the latent
data domain). Estimators of g and 3 which are functions of Z are constructed to
maximize the classification likelihood conditional on Z. For computational reasons,
not all possible allocations can be considered. The process is started by treating
each data point as a separate cluster. Then two clusters are merged into one, the
particular clusters to merge being chosen to maximize the classification likelihood
(3.1) over the estimated parameters. This stepwise process is continued until there
are k clusters. The allocations at that point are taken as the estimate 7. Estima-
tors of g and ¥ based on 7 could be used, but their properties are not as desirable
as those obtained from the EM algorithm (for example, they are not necessarily
consistent, as stated in McLachlan and Basford (1988, section 1.12)).

Derivation of E(Zo) and pi(Zo), maximizers of the classification likelihood for

fixed Zg, is now shown. First define the sample mean of a cluster ¢ as

_ 1
Vi= e > Zi¥;- (3.5)
J=1 “ji 7=1

Then the classification log-likelihood is

L(p, %, Z‘Y k)
- logHH (y;lpi, 2
=1 5=1
k n
= Zszilogf(y]‘WnE)
i=1 j=1

k n

= ZZZ]’[ log( 27r)——10g|§]|—l( — 1) 27 (v, — 1)

=1 j=1
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k n
1
= <—n10g(27r) - —10g|2|> - 522231 (YJ y’z) Y 1(Y] _’I’z)
=1 j7=1
1 k n . .
= (—nlog(%) — 5 log |El> ~5 ziitr [(y; — 1) 27 (y; — )]
=1 y=1
1 [k n
= (—nlog(%) — 5 log |El> — 5t SO zilys—m) (y;— ) =7
| :=1 j=1
1 [k n
= <—nlog(27r) — —log |§]|> — —tr Z { Zilyi =¥ (yi —¥i) +
| =1 7=1

= (otoeter) = 1o ) 5o HZ > 5 s = ¥y, - y»'} 5|
%; tr l(; Zﬁ) (¥i — ;) (yi — i) 71

% (Z Za) (¥i — 1) =7 (i — i) (3.6)

=1 7=1
The maximum of the classification likelihood for a fixed Zy can then be com-

puted most conveniently as
max L (p, X, Zo; Y, k) = max {maXL (p, X, ZO;Y,k)} .
w3z by u
From (3.6) it is clear that L (g, X, Zo; Y, k) is maximized over g uniquely by
1(Zo) = (y1,...,¥%) computed at Z. (3.7)
By Lemma 3.2.2 of Anderson (1984), we have that

o~ n
L(f(Z0). 5, Z0: Y k) = (—nlog(2r) - 5 log|2]) -
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is maximized over X by

E(ZO) = %Zzzﬂ yi) S’z)/ (3.8)

computed at Zg.
Thus we have

m%:XL(p,,E,ZO;Y,k) = —nlog(2m) ——log

H,

Z > el =3 (-9 -
=1 j7=1
and so the agglomerative hierarchical clustering algorithm chooses a cluster merge

This result is often

at each stage to minimize |+ Ele 2?21 2y —¥) (y; — )|
referred to as the determinant criterion and is due to Friedman and Rubin (1967).
Fraley (1999) develops efficient techniques to perform the clustering, which are
implemented in the MCLUST/EMCLUST software (Fraley, 1998).

The allocations Zg given by the agglomerative hierarchical clustering algo-
rithm are then used as the starting values for the EM algorithm, which involves
maximization (over g and X) and integration (over the conditional distribution of
Z given p and X) of the complete-data log-likelihood (see (3.2)). However, note
that (3.2) is simply a constant multiple of the classification likelihood (3.1) for fixed
k and n. Even though the E-step produces estimates 7 that are not integer-valued,
(3.5) and (3.6) are still valid when zj;; € {0,1} is replaced with Z;; € (0,1). Thus
the M-step of the EM algorithm is given by (3.7) and (3.8). As far as the E-step
is concerned, since L (g, X, 7Z;Y k) is a linear function in Z (see (3.6)), its condi-
tional expectation over Z given g and 3 is determined easily from the conditional
distribution of Z given g and X, which is derived below.

First note that
p(Y|Z,p, k) p(Z|p, 2, k)

p(Z|Y, p, X, k
(Z]Y, . 2, k) (Y |1, 5 1)
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< p(Y|Z,p, X2 k)

1
since p(Z |p, %, k) = x

Also,
n k
p(YZ,p, % k) = [T iles =07
7=11=1
n k 1
= 1|t = s {5 (95— = - s |
7=1 Li=1
(where I(+) is the indicator function)
and so zi,...,z, are independent (by factorization), and for each 5 € {1,...,n}
. 1 _
P(z;=i|Y,n, k) o« exp {—5 (yi — ) 27 (v — “i)}
fori e {1,...,k}.
Thus

exp{—§ (y; — 1) 7" (v, — i)}
Yiiexp{ =3 (v — 1) 27 (v - 1) |
independently for each j € {1,...,n}.

P(z,=1|Y,p, 2 k) =

(3.9)

Note that Y% P(z; =i|Y,pu, S, k) =1 Vj. Since
E(zi|Y, 0, 5.k) = P(z; =i[Y,p, 35 k),
the E-step is solved.
Putting it altogether, we have the form of the normal mixture model EM
algorithm for fixed k, as described in Fraley and Raftery (1998):
Algorithm 3.3.1 (EM Algorithm for Fixed k) Estimates for the parameters

(X, 1) of a BVNPCP(A,k,n) are computed as follows, for a given tolerance e:

Step 1: Agglomerative Hierarchical Clustering Perform agglomerative hier-
archical clustering, choosing the clusters to merge at each stage by minimizing
1 k n ) .
- SN zilyi—vi) vi— 3|
=1 j7=1
to yield an initial allocation estimate Z(0).
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Step 2: M-step Given Z(t) = {Zji(t)}, compute

At +1) = mu+myuﬁu+w>

3

o~

Z],

where p(t + 1), =
E] 1 Z]l ]‘:1
and

t‘|‘1 EZZZ], )(Yj_yi)/-

=1 j=1

3

Step 3: Convergence Check Ift > 0 and
L (At + 1), S+ 1Y, 200, F) - L (), S0 Y. Z(0), ) |

‘L <ﬁ(t+1),§(t+1) Y, Z(t), k)‘
then go to Step 5. Otherwise proceed to Step 4.

Step 4: E-step Given (u(t+1), f](t + 1)), compute z(t + 1) according to
~ —1
em{—am—uu+mYPa+w]<m—uu+mﬁ

E];:l exp {—% <yj — p(t+ 1)q>/ [i(t + 1)] -1 <yj — Bt + 1)(1)}

increment t by 1, and go to Step 2.

Zu(t+1l) =

Y

~(k ~
Step 5: Termination Set the final estimates to SN S(t+1) and g =

p(t+1). Estimates of the expected allocations can be taken from the last

iteration of the E-step to give 70 = Z(t)

3.4 Computation of Approximate Variance of
Parameter Estimates for Fixed k&

N
As mentioned in section 3.3, estimates (E( ),ﬁ(k)) from Algorithm 3.3.1 are
not guaranteed to be MLE’s of the observed-data likelihood. However, Theorem 4.1
of Chapter 6 in Lehmann (1983) can be used to obtain the asymptotic distribu-

(R

tion of (X ,ﬁ(k)), since they are solutions to (3.4). The regularity conditions of

Lehmann’s theorem are not rigorously verified in this thesis, but are suspected to
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hold. However, since many authors (for example, McLachlan and Basford (1988,
sections 1.9 and 2.4)) advocate the use of the asymptotic distribution implied by
the theorem for computation of approximate variance in our situation, and for lack
of a better alternative, that is how we proceed.

Before stating the asymptotic distribution, some terminology regarding infor-
mation matrices is introduced. For simplicity of notation, let

0 = {0'7#} = (011702270127/1117/«6127 e 7/~Lk17/~0k2)/

and
(k) ~(k) ~(k A(k) A(k) A(k) (k) A(k NOBYONY
0 = {0-( )7 y'( )} = <0-§1)7 UéZ)v 0{2)7 M(ll)v M(12)7 ce 7/“‘21)7 M22)>
Definition 3.4.1 (Observed Information Matrix) The observed information ma-

triz for the BVNPCP(A,k,n) is given by
—0?L(0;Y .,k
10(0|Y,k):{ O’L(6;Y, )}7

06*
the negative of the Hessian matriz of the observed-data (mizture) likelihood.

Definition 3.4.2 (Complete Information Matrix) The complete information
matriz for the BVNPCP(A, k,n) is given by
—0*L(0;Y,Z,k) }

06*
the negated Hessian matriz of the complete-data likelihood.

IC(0|Y,Z,k):{

Definition 3.4.3 (Missing Information Matrix) The missing information ma-
triz for the BVNPCP(A,k,n) is given by
—9%1 Z10,Y.k
Im(GIY,k)zEZ{ ogp(Z16.Y, )‘evak}_

00*
Definition 3.4.4 (Fisher Information Matrix) The Fisher (or expected) infor-

mation matriz for the BVNPCP(A, k,n) is given by
I(0|k) = EY [10(0|Y7k)] :

If the regularity conditions are assumed to hold, then Theorem 4.1 of Chapter 6
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in Lehmann (1983) yields
NG

D e e
where “—7 denotes convergence in distribution.

Y612 (0. [(6I)

The Fisher information I(8|k) is intractable to work with in our situation, so
as suggested by McLachlan and Basford (1988, sections 1.9 and 2.4), we use the
observed information I, (0|Y, k) calculated at the EM estimate 9", Thus we use
the approximation

A <9, [IO(GIY,k)]—l‘a(k)> : (3.10)

“X” denotes “is approximately distributed as.”

where

McLachlan and Basford (1988), however, do not compute the observed infor-
mation matrix I, (8| Y, k), directly or indirectly. They instead use an approxima-
tion, the accuracy of which is unknown. Dasgupta and Raftery (1998) analyze a
similar model and suggest the use of an approach such as the supplemented EM
algorithm (Meng and Rubin, 1991) (which also approximates the observed informa-
tion matrix) to obtain variance estimates.

However, I, (8] Y, k) can be computed in closed form, and that is how we will
obtain variance estimates. Derivatives of the observed-data likelihood are difficult
to calculate, but two results due to Louis (1982), which we state in the Lemma
below, allow us to work with the complete-data likelihood:

Lemma 3.4.5 (Louis) For arbitrary(Y,Z,0,k), if1,(0|Y,k),1.(0|Y,Z,k) and
In(0|Y, k) exist then

L(6:Y.Z, k
Im(9|Y,k):Varz{a ( ’697 : )‘Q,Y,k} (3.11)
and
L,(8|Y,k)=FEz[1.(60|Y,Z,k)|0,Y k] —1,(0|Y,k). (3.12)

Proof: See Louis (1982).
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The result (3.12) is often called the Missing Information Principle. Due to

the construction of Algorithm 3.3.1, we also have

g, | OLOY 2R |y _[OLOY 2R gy =0,
BT " 00 a(k),Z(k)
and so
oL (0;Y.Z. k)
Vary { O v ] ”
B OL(8:Y.Z,k)\ (OL(6:Y.Z,k)’
- H 96 }{ 06 X g~
0L (6;Y,Z, k) OL(6; Y. 2 k) |

= Ez HaL(e;;g,z,k)} {6L(0;a§,z,k)}’

Using Lemma 3.4.5 and (3.13), we thus approximate the asymptotic distribu-
(k)

~(k
tion of 8 as

e,Y,k]

(3.13)

a(k)

6" 2 v (0.Var(6")) (3.14)
where
PN _ A2 .
Var(@") = | [ IO L)y - (3.15)
06 ™
OL(0:Y,Z,k)) (OL(6;Y,Z.k))’ -
Bz H 00 } { 00 8. Y.k PO

Detailed expressions for (3.15) for the BVNPCP(A, k, n) are derived in Appendix A.4.

3.5 Composite EM Analysis of the BVNPCP

The results of sections 3.3 and 3.4 give us estimates of X for a BVNPCP(A, k, n),
along with their approximate variances. In this section, we use these quantities
from BVNPCP(A, k,n)’s for a range of k’s to construct an overall, or composite
EM, estimate of ¥ (along with approximate variance matrix) that accounts for
the uncertainty in estimation of k. The approximate asymptotic distribution of the

composite EM estimate is derived and used to construct isotropy tests and compute
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confidence regions for various parameterizations and components of 3.

3.5.1 Derivation of the Estimator

Adopting a Bayesian perspective, we can consider each BVNPCP(A, k,n) as a
candidate model for the observed spatial point pattern Y, the models being indexed
by k. Instead of attempting to choose one “correct” model, we will implement a
Bayesian model averaging scheme. The first step in such a scheme is obtaining
estimated model probabilities

{J/D\(number of clusters = k|Y)} = {ﬂk)}
for a reasonable range {ki,...,kni} of possible k (note the suppression of depen-
dence on Y in the notation).

Fraley and Raftery (1998, section 2.4) promote the use of the Bayesian In-
formation Criterion (BIC) (Schwarz, 1978) to assess model probabilities for our
situation. They state “although the regularity conditions for BIC do not hold for
mixture models, there is considerable theoretical and practical support for its use
in this context,” citing Leroux (1992); Roeder and Wasserman (1997); Dasgupta
and Raftery (1998); Campbell et al. (1998); Mukerjee et al. (1998). The BIC for a

particular k is defined as

BICPM = 2L </0\(k); Y, k) — (#parameters) log(n) (3.16)
~ oL <§('“); Y. k) — (2K +3)log(n), (3.17)

since we have 2 parameters for each cluster mean g, and 3 for o. (Note: there
is variation in the literature regarding the use of log(n) vs. log(rn), where r is
the dimension of an observation y,, but we choose log(n) as in Fraley and Raftery
(1998)). The BIC can be used to calculate approximate Bayes factors (see Kass and

Raftery (1995)), and also posterior model probabilities for given prior probabilities
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of each candidate model. We assign equal prior probabilities to models in a range
{Fio - .., ki } and compute estimated model probabilities, like in Raftery (1993,

equation 11), as
exp (lBIC’kEM)

Zk‘“k exp( BIC;EM)

Next we obtain parameter estimates and variance approximations from BVN-

W= (3.18)
PCP(A,Ek,n)’s for k € {kio,...,kn} using the methods of sections 3.3 and 3.4.
Instead of considering 8 as a parameter, we now follow the Bayesian paradigm and
consider it a random vector 8* with a distribution of its own. Using Result 8(iii) of
Berger (1985, section 4.7.8), we have

9* L N <§(k),\7a\r(§(k))> , (3.19)
where /G\(k)is the EM estimate and @(a(k)) is given by (3.15).

For investigation of isotropy we are only interested in estimation of o, and
so we extract the appropriate subvector o* from 8*, subvector & " from Q(k) and
submatrix @(G(k)) from @(a(k)) in (3.19) to obtain

ot XN (a““),\//a\r(a(’“)) . (3.20)

A generalization of equations 14 and 15 of Raftery (1993) from scalar to vector

form gives estimates of E(o*|Y) and Var( *|Y)

E(o*]Y) = Z o't (3.21)
k= klo
and

& = E(o*[Y) (3.23)
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with approximate variance given by

Var(3) = Var(a*]Y). (3.24)
Although (3.21) suggests that the asymptotic distribution of & is a mizture of
normal distributions, we will approximate the distribution as multivariate normal
in constructing confidence regions and test statistics. This is somewhat reasonable
in cases where a small collection of nearby k’s are dominant in estimated model
probabilities, but certainly less reasonable in situations with many and/or disparate
supported values of k. In our analyses, the former situation is more common, but
caution is nevertheless advised.

So we will take & of (3.23) as our composite EM estimator of o and approxi-

mate its asymptotic distribution from (3.14) and (3.21) — (3.24) as

AN <a,\7a\r(a)> . (3.25)

—

Note that Var(e*|Y) in (3.22) can be re-written as

kni
{ Z Var(a'(k))ﬂk)} + (3.26)
k=k,

7

ki , ki ] ki
Z <3.(k)> <5.(k)> | - lz Fpk) l Fpk) (3.27)
k=ki, k=ki, 4 Lk=k,
and that
ki , ki [ kni !
diag{ | Y <3<k>> <3.(k)> M| - ! gMEM| |3 #MEM |} >0
=kio =kio Lk=k,

since (3.27) is positive semidefinite, with equality holding only in the trivial case
that all G(k)ﬂk) are equal. The fact that (3.27) is positive semidefinite is evident
from the consideration of {&*)} as observations from some (arbitrary) distribution
and (3.27) as a weighted sample variance estimate for this distribution.

Therefore the variances on the diagonal of Var(e*|Y) are at least as large as
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pooled variance estimates using the weighted average

knj
Z Var(a'(k))ﬂk),
k=ki,
and so the composite EM method inflates variance estimates which would be used

in a naive combination of separate analyses by k. This is appropriate since the
uncertainty in estimation of k should be accounted for.
In our analyses we found that the diagonal elements of (3.27) were sometimes

smaller and sometimes larger than those of (3.26).

3.5.2  Applications for Anisotropy Estimation and Test-
ing

The composite EM estimator developed in section 3.5.1 can be used to pro-
duce a 3-dimensional confidence region for o = (011, 092, 012)’, utilizing approximate
normality. It can also be used to obtain more interpretable confidence regions and
intervals in terms of the components of and other parameterizations of o.

Let f(o) be any function of interest. Then the multivariate A-method yields

(&) N <f(0'), J@(&)J’) : (3.28)

where & and @’(3’) are the composite EM estimate and its approximate variance,

()

Useful choices of f(o) are discussed below.

and

(3.29)

[aﬂa) of (o) af<cr>]

60'11 ’ 60'22 ’ 60'12

3 P

To facilitate comparisons with results from Markov chain Monte Carlo (in
which careful choice of parameterization is vital for some methods), we focus on
“normalized” versions of components of o (meaning parameterizations that are
likely to achieve the best approximation to normality). First we define a useful

transformation of the correlation coefficient which improves approximate normality:
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Definition 3.5.1 (Fisher’s z-transformation) Define the theoretical correlation

coefficient as

012

\/011022'

Then the Fisher’s z-transformation of p1o is defined as

pra) = Llog [ LEP12
prz 2 & 1—,012 '

Componentwise confidence intervals are constructed for the following choices

of f(o):

P12 = (330)

logo11, logoa, z(p12), logvy, log¥, o, (3.31)
the first 3 involving the regular parameterization (see Definition 1.1.9), and the last
3 involving the anisotropy parameterization (see Definition 1.1.10). Detailed expres-
sions of the Jacobians J (3.29) for these parameters are shown in Appendix A.5.

Note that the null value of log~ in the case of isotropy is 0, which is on the
boundary of the parameter space. Thus an isotropy test utilizing an estimate of log v
is subject to criticism. However, a confidence interval for log ~ is still meaningful,
especially in cases where there is clear anisotropy, the strength of which one wishes
to assess. There does not appear to be an adequate adjustment to the definition of
v, or its estimation, that will render it inarguably acceptable for isotropy testing.
Perhaps there should not be, as the test of isotropy is really a 2-degree-of-freedom
test, comparing the situations (3 = ¢°I) and (X arbitrary).

A more appropriate test of isotropy is the simultaneous assessment of the
difference in variances and the covariance, the normalized version of which is

C_

(o (10g o111 — 10g 022, Z(plZ))/- (332)
A well-defined isotropy test is a test of ¢ = 0. A 2-dimensional confidence region

for ¢ can be plotted, with its deviation from the null value 0 suggesting the nature

and extent of anisotropy. The components of the Jacobian .J (3.29) for o are given
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in Appendix A.5.
By (3.28), an approximate 100(1—a)% confidence interval for a scalar function
f(o) is computed as
F@) + (1) [Var(3).] | a3 (3.33)
where & is the composite EM parameter estimate, @’(3’) 1s 1ts approximate vari-
ance, .J is as defined in (3.29), and (1-2) is the (1 — £)™ quantile of the standard

normal distribution.

Similarly, an approximate 100(1 — «)% confidence region for o° is

o -1
7 [Var(3)] 6] < xd(1-a), (3.34)
where ¢ = (log 11 — log 692, 2(p12))’ is the composite EM parameter estimate,

@’(3’6) is its approximated variance according to (3.28), and x3 (1 — «) is the
(1 — o)™ quantile of the Chi-square distribution with 2 degrees of freedom. An
isotropy test can be conducted by computing the left-hand side of (3.34), say Xops,

and obtaining a p-value of P(X > X,,) where X ~ 3.
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CHAPTER 4
RIMCMC ALGORITHM DESIGN

4.1 Motivation

While the composite EM technique of Chapter 3 offers an appealing method
to account for the unknown number of clusters k in estimation of 3 for a BVNPCP,
it 1s subject to criticism on the grounds of the questionable accuracy of the BIC
used to estimate model probabilities. An alternative modeling strategy is to adopt
a fully Bayesian perspective by specifying the BVNPCP as a Bayesian hierarchical
model including all unknowns, parameters and latent data alike, and assigning a
distribution to each unknown quantity. In particular, k& can be allowed to vary in
the hierarchical model, permitting uncertainty of its true value to be inherently
accounted for in the estimation of quantities of interest (in our case, X).

As in Chapter 3, we will think of the BVNPCP in terms of a mixture model.
Markov chain Monte Carlo (MCMC) methods (Hastings, 1970; Metropolis et al.,
1953; Geman and Geman, 1984; Gelfand and Smith, 1990) have been successfully
applied to problems in finite mixture analysis. Diebolt and Robert (1994); Lavine
and West (1992); Bensmail, Celeux, Raftery, and Robert (1995) and other authors
have developed Gibbs sampling approaches to analyze univariate and multivariate
normal mixture models for fized k. In such approaches, k is treated as a model
indicator, and any of a number of available model selection techniques utilizing

marginal likelihood estimates are applied to in an attempt to choose the “best” k.
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Examples of such methods applied recently include the Laplace-Metropolis estima-
tor (Raftery, 1995), importance-sampling-based estimators (Newton and Raftery,
1994), the Schwarz BIC criterion (Schwarz, 1978) and Approximate Weight of Evi-
dence (Banfield and Raftery, 1993).

Typical MCMC methods (e.g. the Gibbs sampler and Metropolis-Hastings
algorithm) apply only to situations in which the dimension of the parameter space
is fixed. However, we wish to model k as a parameter, in which case the dimen-
sion of the parameter space is not fixed (e.g., the dimensionality of p varies with
k). Stephens (1997) develops a generalization of the Metropolis-Hastings algorithm
based on the Markov spatial birth-and-death process (Geyer and Mgller, 1994) to
allow for varying parameter space dimension, applying it to multivariate normal
mixtures. Another method to handle varying parameter space dimensions is jump
diffusion (Grenander and Miller, 1994; Phillips and Smith, 1995). Carlin and Chib
(1995) design a sampler consisting of several parallel chains, each traversing its own
parameter space, and take the output on a given sweep to be the state of one of the
parallel chains. This approach appears to work well but requires a large amount
of additional analytical effort and computer time for problems such as ours; it is
probably not feasible for more than a handful of k£ values. A more flexible tech-
nique applicable to Bayesian hierarchical models with varying dimension, which can
be considered a generalization of the methods of Stephens (1997) and Phillips and
Smith (1995), is reversible jump Markov chain Monte Carlo (RIMCMC), developed
by Green (1995). RJMCMC is essentially a random sweep Metropolis-Hastings
method adapted for general state spaces. Richardson and Green (1997) develop
an application of RJIMCMC to univariate normal mixture models. We construct

a version applicable to bivariate normal mixture models, suitable for modeling a
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BVNPCP.

Construction of the algorithm itself is presented in this chapter. A primary
drawback of dimension-changing MCMC methods has been the lack of suitable
convergence assessment techniques. In Chapter 5 we propose a new convergence
assessment method applicable to MCMC situations which are indexed by models

(k). Output analysis procedures are discussed in Chapter 6.

4.2 A Bayesian Hierarchical Model Specification
of the BVNPCP

A fully Bayesian specification of the BVNPCP is achieved as a Bayesian hi-
erarchical model (BHM), in which prior distributions are assigned to all unknown
quantities (sometimes generically called “parameters,” including both latent data
and quantities that would traditonally be called parameters in a frequentist anal-
ysis). Some of these distributions are defined in terms of fixed hyperparameters.
First we present our definition of the BVNPCP as a Bayesian hierarchical model
(BVNPCP-BHM(A,n) ):

Definition 4.2.1 (Bayesian hierarchical model specification of a BVNPCP)
A BVNPCP-BHM(A,n) for a study region A and observed total offspring count n
s defined as follows:

1. The positions of the offspring relative to the locations p of their parents
(parentage being determined by Z ) are independently and identically distributed
as N(0,3), conditional on being confined to A, i.e.,

v, {k, s, 2,2}y ~ N <p,zj,§]> and are independent, \¥j € {1,...,n},

conditional on {yi,...,y.} € A.

2. Let the allocations (Z) be defined as in (2.4) and z; denote the 7' row of Z.
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Define the notation “z; = q” to represent
1, ifi=q

0, otherwise.

Z; =

Allocations are determined independently as
iid. 1
Z1y. .. % X Mult (1,—1) ,
k
i.e.

1
Z1,...,Z, are independent with P(z; = q) = T Vge {1,...,k}.

3. Parent event locations (g, also called cluster centers) are independently dis-
tributed uniformly on A, i.e.,

[T T o U(A) and are independent.

4. The number of parents (k) is uniformly distributed on the set of integers
{klm ceey khi}; i.e.,
k~U{ko, ..., kni}

where ky, and ky; are fized hyperparameters.

5. The cluster shape/scale parameter (3, common to all clusters) is distributed
(independent of all other quantities) according to an Inverse Wishart distri-
bution, according to

S~ Wo(m, V),
where m is the (fized hyperparameter) degrees of freedom parameter and V
the (fized hyperparameter) covariance matriz parameter. (Generally, we will
take m = 2 and V' = mo?l for reasonable o2, implying isotropy in the most

uninformative way possible).

The Inverse Wishart distribution is a typical choice for the prior distribution of

a covariance matrix (see e.g. Stephens (1997), who also studies bivariate normal
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mixtures) and is a multivariate generalization of the Inverse Gamma distribution,
which is very commonly used for scalar variances (e.g., Diebolt and Robert, 1994).
The Inverse Wishart family is a conjugate family of prior distributions, thus making
Gibbs sampling feasible for updating 3 (as we will see in section 4.4).

A realization of a BVNPCP-BHM(A, n) conditional on the realized values of
kE and X is clearly equivalent to the BVNPCP(A, &k, n) and mixture model specifi-
cations (see Definitions 3.1.1 and 3.1.3). Prior distributions of k and X are chosen
to be as uninformative as possible (while still being proper) so as to have minimal
effect on inference. We could have used a Poiss(p) prior for k (except disallowing
kE = 0) to match the BVNPCP assumption, but this is not practical unless either (1)
there is evidence suggesting likely values of k, or (2) the same process is observed
in more than one study region. The quantities k and p would not be separately
identifiable for only one realized pattern in a region A. In fact, in the case of only
one realized pattern (as considered in this thesis), inference for k can be considered
equivalent to inference for p. The parameter v of the BVNPCP becomes irrelevant
due to conditioning on total number of offspring n.

A useful representation of a Bayesian hierarchical model is a Directed Acyclic
Graph (DAG), which is shown for our BVNPCP-BHM(A, n) model in Figure 4.1.
We follow the same conventions as Spiegelhalter et al. (1995) and Richardson and
Green (1997) by enclosing unknown quantities in circles and fixed or observed quan-
tities in boxes. Each such enclosed quantity is called a node. An arc represents a
direct probabilistic dependency and points from a parent (not to be confused with
the term “parent event” in BVNPCP terminology) to a child (i.e., children nodes
are stochastically dependent on their parent node(s)). Lauritzen, Dawid, Larsen,

and Leimer (1990) establish that the joint distribution of all random quantities is
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Figure 4.1: Directed Acyclic Graph (DAG) for a BVNPCP-BHM.

fully specified in terms of the conditional distribution of each node given its parents.
Also, for any node 7, once the values of its parent nodes are given, no other nodes
besides the descendants of n are informative concerning 7.

For simplicity of notation, let the unknown quantities be represented as 8 and
the (fixed) hyperparameters as £&. Then we have

Unknown quantities: 8 = (k,p,Z,3)
Fixed hyperparameters: ¢ = (kio, khi,m, V)
Observed data: Y

The joint prior distribution refers to the distribution of @ before the data Y are
observed and is typically written as “p(@).” The notation “p(8|£)” might be more
appropriate, but dependence on ¢ is implied and suppressed in notation. Also note
in particular that since the distribution of X! is more convenient to specify than

that of X, the quantities ¥ and ¥~' may be used interchangeably in notation
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when the meaning is not ambiguous. For the BVNPCP-BHM(A, n), the joint prior

distribution can be determined as follows:

p(8) = p(0¢)
= p(k,p, 271, Z[¢)
= plplk, B, Z, Op(Z]k, 2, p(Z 7 |k, E)p(k[E)
= p(plk)p(ZIk)p(S 7 m, V)p(k ki, k1o) (4.1)
where, using Definition 4.2.1,
1
Elkni, k) = ————
plk ki, bo) khil—klo—l-l
p(plk) = W
1
p(Zlk) =+

and
p(E7 m, V) = C_1|V|_%‘E_l‘mT_Sexp{—%tr(V_IE_l)}

where m >2 and C = om sl <%> r (mT—1> .

The likelihood for a Bayesian hierarchical model is defined as the distribution

of the observed data given all other quantities, and is given by Definition 4.2.1 as:

p(Y|0> = p(Y|;l,, Z, 2)

n

[ oo S m) > )

J=1

_ ﬁ&]r%eXp{—%i<YJ_NZj>/2_1 <y]‘—u2j>} (4.2)

J=1

Note that this is equivalent to the classification likelihood defined in (3.1).

The aim of MCMC is to construct a Markov chain {Q(t)} whose limiting
distribution is p(@]Y), the posterior distribution of unknown quantities given the
observed data, thus allowing us to obtain a (dependent) sample (approximately)

from that distribution. (Note that dependence on € is again suppressed in notation).
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The chain is started at an initial value 8° (chosen at will). For a given state 8°, a

6°*! is produced by “updating” some component of 8° (a “component”

new state
being defined as any subset of 8, ranging from one scalar parameter to the entire
set of parameters). The value of 8° is saved at pre-determined stages (e.g., perhaps
after each member of a exhaustive set of components is updated in turn) to create
a sequence {G(t)}, each member of which is referred to as a sweep.

The updating must be performed according to certain criteria to ensure the
proper limiting distribution. The two most common types of updating schemes
which satisfy these criteria are Gibbs sampling and the Metropolis-Hastings algo-
rithm, the former actually being a special case of the latter (see Brooks (1998) for a
review). If the full conditional distribution of a component 8. given all other quan-
tities of the model ({8, Y,£}) can be determined and easily sampled from, then
a Gibbs step can be implemented, in which 8. is updated by randomly generating
a new value from p(8.]0(,,Y,§). (Note: the notation @ represents all quantities
in @ except those in 6.). Otherwise, if updating 8. will not alter the parameter
space of 8, then a traditional Metropolis-Hastings step can be implemented. In this
type of update, a proposed new value 87 is simulated from any distribution having
the correct support, but accepted only with a computable probability (computed
using the forms of the proposal distribution, prior distribution and likelihood). If
it is not accepted, then the chain retains its current value of 8.. For the BVNPCP-
BHM(A, n), we will see that a Gibbs update works nicely for g, 3 and Z. However,
neither a Gibbs nor any other traditional Metropolis-Hastings update will work for
k, since a change in k alters the dimension of 8. Therefore a new mechanism is

required to handle transitions from one parameter space into another. RJIMCMC,
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explained in the next section, provides such a mechanism. We will use it to de-
sign new types of Markov chain transitions (“moves”) which update k along with

selected other components of 8.

4.3 RJMCMC Methodology

Green (1995) introduces a new mechanism, reversible jump Markov chain
Monte Carlo (RIMCMC), for Markov chain updates which allow transition be-
tween parameter spaces of differing dimension (“dimension-changing moves”). He
establishes a Markov transition kernel (8, d0), where 8 and d@ may belong to dif-
ferent parameter spaces with different dimensions, which is aperiodic, irreducible,
and satisfies detailed balance:

/ / (d6%)Y) x (6%,d8°) / / (46°Y) « (6°,d6°) (4.3)
for any Borel sets A, B in the combined parameter space ©, U ©,, where 8 € 0,
and 6° € ©,.

Detailed balance essentially means that the equilibrium probability of moving
to A and then B is equal to that of moving to B and then A. These conditions
(aperiodicity, irreducibility and detailed balance) are more than enough to ensure
ergodicity and the correct limiting distribution p(8|Y) of a chain implementing
transitions according to (-, -). Thus after a suitable “burn-in period” (to be assessed
more rigorously in Chapter 5), we can treat samples from a Markov chain with
transitions given by k(-,-) as dependent observations approximately from p(8|Y).
(Note: the Gibbs sampler and Metropolis-Hastings algorithm are actually special
cases of k(-,-) for which the parameter space is fixed). See Green (1995) for details.

We now describe the mechanism for dimension-changing moves designed by
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Green (1995), dissecting the scheme into more components to improve clarity. Con-
sider a pair of moves M, and M, that provide transitions between parameter spaces
0, and Oy, possibly of different dimension. Let 8 € ©, and 0° € ©,. The notation
RN represents an implementation of M, which updates the state of the Markov
chain from @ to 8, where 8 and 8™ could be identical. The reversible jump mecha-
nism is essentially a method to determine acceptance probabilities (6, 6% M,, M)

and oz(eb, 0% My, M,,) such that moves are implemented according to

6°, with probability o(8¢,8°; M,. M,
g Mo, P ¥ ol ) (4.4)
8°, with probability 1 — (8%, 8% M,, M)
and
0, with probability (6%, 8% M,, M,
gb Mo, P v ol b Ma) (4.5)
6°, with probability 1 — (8", 8%; M, M,).

The acceptance probabilities are determined as follows. From 6%, a move of

type M, is started by proposing a new state 8 according to:

¢(My;0%) = probability of choosing this particular move type M,
when at ¢, (4.6)
d(Dg2) = probabilities of discrete random variables Dga

(if any) generated as part of the move attaining

their realized values (otherwise, 1), (4.7)

q(Uga) = density of continuous random variables Uga (if any)
generated as part of the move (otherwise, 1), (4.8)

‘gg;::; = Jacobian of deterministic components (if any) of the

mapping (8, Dge, Uge) — (06, Dge, Ueb), represented
more succinctly as Tga — Tgo, where (Tga, Tps) are terms

in (8%, Dga,Upa) and (8°, Dgs, Ug) involved in any
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besides trivial identity mappings (otherwise, 1), (4.9)
where ¢ (Ma; 06), d(Dgv) and ¢ (Ugs) are defined analogously for a “reverse” move
M, which proposes a transition from 6° to 8%, and

dim (Tye) = dim (Ty), (4.10)
where (4.10) is referred to as the dimension-matching condition.

Then the acceptance probabilities are given by:

a(0,6% M,, M) = min {1, R (6*,6"% M, M,)} (4.11)
where
o b, ~ [p(Y0")] [p(6")] | (M.; 0°)
S i L<Mb;ea>]' (412)
{d(Dob)] [Q(Uob)] ‘a(Tob)
d(De2)] | q(Usa)] |0 (Tga)|
and
a(8°,0% M,, M,) = min {1, R (6°,6% My, M,) } (4.13)
where
1

b pa. _
) y b,y g | — .
R (6°,6% M,, M,) (4.14)

R(6°,6% M, M,)
(If the denominator of an acceptance probability is calculated as zero, then the
convention is to set the acceptance probability to zero, since the move would not
be possible).

So, computation of the acceptance probability for a jump 6 M, gt requires
a reconstruction of how the reverse jump 6° e 9 would have occurred.

If a pair of moves (M, /My) is designed according to (4.4) — (4.14), then detailed

balance holds, and a “reversible jump” between parameter spaces 0, and Oy is

established.
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4.4 Algorithm Design for the BVNPCP-BHM

The RIMCMC mechanism allows a considerable amount of flexibility in the
design of state updates (moves) in a MCMC strategy. The challenge is to construct
a collection of move types so that (a) dimension-changing moves yield acceptance
probabilities in a moderate range (where “moderate” is not well-defined for RJM-
CMC) and (b) the entire collection of moves exhaustively updates (or at least at-
tempts to) all components of 8. Acceptance probabilities that are too low will tend
to produce poor “mixing” properties (i.e., the chain will converge very slowly to its
limiting distribution, and dependence between successive sweeps will likely be very
high). On the other hand, acceptance probabilities that are too high will tend to
correspond to only minor state changes, and may cause the chain to get “stuck”
(i.e., fail to traverse all areas or modes of the combined parameter space). Thus, to
put it succinctly, dimension-changing moves must be bold but sensible.

The RIMCMC strategy we develop for a BVNPCP-BHM(A, n) is roughly
based on the move types used in Richardson and Green (1997), but adapted for
bivariate data, and modified to overcome a flaw apparently missed by Richardson
and Green (1997). An essentially unlimited amount of fine-tuning is possible for
the dimension-changing moves; we implement details as suggested by limited exper-
imentation and do not claim our choices to be optimal. We suspect that fine-tuning
is unlikely to lead to significant improvement. Richardson and Green (1997, p. 741)
state that “it is rarely worth fine-tuning the proposal distribution, especially if do-
ing so prevents simple and explicit random variate generation.” We do not exclude
the possibility that the addition of clever new move types may significantly improve
the design, but this is left for future research. See section 4.5 for a discussion of the

unexpected result of attempts to improve a move by adding a Gibbs update.
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Let the notation p(8.|---) represent the full conditional distribution of a com-
ponent 8. of 8 given the values of all other components, i.e. p(8.[8(,). Our RIM-

CMC strategy for the BVNPCP-BHM(A, n) consists of the following collection of

move types:

M, (Update p): update p via a Gibbs step, by generating a new value from

p(pl )

Ms (Update X): update ¥ via a Gibbs step, by generating a new value from

p(X]--)

Mz (Update Z): update Z via a Gibbs step, by generating a new value from

p(Z]---)

Ms/Mc (Split/Combine): attempt to either split a cluster in two or combine two

“neighboring” clusters into one

Mp/Mp (Birth/Death): attempt to either generate a new cluster center at a ran-

dom location, or delete an existing cluster center

Note that (Ms/Mc¢) is a “reversible jump” pair of dimension-changing moves, as is
(Mp/Mp).

The birth/death move pair, although perhaps somewhat redundant and in-
efficient in the presence of split/combine, is included because of the possibility of
split/combine moves being insufficient to explore certain regions of the parame-
ter space. Perhaps the addition or deletion of a cluster center in a certain area
would improve the situation, but is discouraged by the limited capability of the
split/combine mechanism. At some point in the chain, a birth or death move may

attempt such a maneuver.
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Details of the move types, and finally the overall algorithm, are given in the
next several subsections. First we define some notation and new terminology that
will be used.

For any symbol “a”, the quantities (8, k%, u*, X Z") denote the current val-
ues of (0,k,pu,X,7Z) at a given state “a” in the Markov chain (where “a” is not
an index of time or sweeps, but rather is set to a value suggestive of its contextual
meaning). The absence of a symbol (when not ambiguous) may also suggest a state,

e.g., we could discuss a transition from 8 to *.

The notation y; retains the same meaning as given in (3.5). Since z;; € {0,1}

always holds in our RIMCMC method, we also define

ni=>_ zi (4.15)

to indicate the number of offspring alloczjt:eld to cluster i.
In combining clusters, acceptance probabilities are reasonable only for at-
tempts to combine nearby clusters. Thus, for the Ms move, a definition of “adja-
cency” is needed. Since we are modeling (in general) a geometrically anisotropic

process, the usual Euclidean distance is inappropriate. Instead, an alternative mea-
sure of adjacency is defined:
Definition 4.4.1 (NNx) The ¥ — Nearest — Neighbor (NNx) of a cluster i is
defined as
NNz(i) = arg min [(uq — ) 57 (- ll’i)] :

in other words, the cluster with the closest center to its own in terms of the Maha-
lanobis distance induced by 3.

In deriving full conditional distributions and ascertaining which moves can
be performed in parallel, it is helpful to consult a Conditional Independence Graph
(CIG) of the model, which is shown in Figure 4.2.
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Figure 4.2: Conditional Independence Graph (CIG) for a BVNPCP-BHM.

The CIG is formed by “moralizing” the DAG, i.e. connecting common parents
of children nodes, and dropping the arrows (Lauritzen and Spiegelhalter, 1988).
The conditional distribution of a node in the CIG given all other quantities can be
reduced to its distribution given nodes it is directly connected to. (In other words,
nodes not connected in the CIG are conditionally independent given all other nodes).
We see from Figure 4.2 that there are no conditional independencies among 3, p
and Z, and thus we cannot implement any Gibbs steps in parallel.

In general, the derivations of full conditional distributions and other densities
are given by Definition 4.2.1, 4.1, 4.2, and Figures 4.1 and 4.2. Detailed reasons are

given only for nonstandard steps in the derivations.
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441 M, Details

The full conditional distribution of g given all other quantities can be deter-

mined as follows:

p(y’| te ) = p([l,|Y, Z7 Evk)
p(Y|p,Z, %, k)p(p|Z, %, k)
p(Y|Z,3, k)

p(Ylp, Z, 3)p(p|k)
p(Y|Z, %, k)

o p(Y|p,Z,X)p(plk)

x  exp {—%i <yj — uzj>/2‘1 (yj — u2j>}

J=1

k n
n 1 _ _
2T\ 5 Z 2i (¥ — i) yi)'} x-!

=1 j7=1

%Z (Z Za) (Vi —p) 27 (yi - ll'i)}

r details of the previous step)

—
2]
@D
@D
A~ .
w I
OJ
~——
—+
o

implying that (g, ..., g, ) are independently distributed with g, --- ~ N <y,, —E).

Thus the update ﬂ 0™ can be performed with a Gibbs step as follows:
(1, 5.2, k) % (p, 2,2, )

where (p7, ..., pf) are generated independently according to

1
gt~ N <y ;2> el .. k). (4.16)
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4.4.2 Ms Details

The full conditional distribution of X! given all other quantities can be de-
termined as follows:

p(E7) = p(BTY,Z pm, V)
(Y2, Z, p,m, V)p(Z7HZ, g, m, V)
p(Y|Z,p,m, V)
p(Y|2,Z, p)p(Z~ m, V)
p(Y[Z, p)
o p(Y|Z,Z, p)p(Z~ m, V)

n 1 & !
o33 (o) 7 (5 ) |

71=1
{‘2_1 ‘ N exp {—%tr (V_IE_l) }}

= ‘2_1‘ 2 exp{—%[tr(v_lﬁ_l)—l-

implying that
-1

2_1|...NW2 Tn—|—n7

VT4 zn: (yj - u2j> (y; - u2j>/
j=1

Thus the update M= 9% can be performed with a Gibbs step as follows:

(3, 4, 2, k) =3 (5%, p, Z, k)
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where 3* is generated according to

VT4 zn: (yj - u2j> (y; - u2j>/
j=1

Note that the update involves essentially a weighted contribution of prior and

-1

(7" ~ Wy | m o+, (4.17)

observed data, with weight —— given to the data. Thus, with m = 2 and n > 100

n+m

(as in the applications in this thesis), the prior has very little influence provided V'

is chosen reasonably.

4.4.3 Mgz Details

The full conditional distribution of Z given all other quantities can be deter-

mined as follows:

plZ|--) = pZ|Y, %, pu, k)
p(Y|Z, 3, p, k)p(Z|X, p, k)
p(Y[X, p, k)
p(Y|Z, %, p)p(Z|k)
p(Y[X, p)

- ﬁ[ﬁl(zj:i)exp{_%(YJ_“i)/E_I(YJ_“i)} :

=1

and so zi,...,z, are independent (by factorization), and for each 5 € {1,...,n}

. 1 )
Pz, =i]Y,p, 5 k) eXp{—§(y]‘—m)'2 I(YJ_“i)}

fori e {1,...,k}.

Thus
exp{—1(y; —p) S (y; — p)}
Shvexp {1 (v - ) =7 (v - m,) |

P(z,=1|Y,p, 2 k) =
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independently for each j € {1,...,n},
duplicating the result (3.9).
Thus the update M2, 0% can be performed with a Gibbs step as follows:
VAR E-SVANTE NS

) are generated independently according to
exp{—5 (y; — 1) 37" (y; — pi)}
k ' - '
Yhexp {1 (v - m) =7 (v - m,) |

* *
where (z7,...,2z}

P(z;=i|Y,p, 5 k) = (4.18)

444 (Ms/Mc) Details
The split/combine move pair (Ms/Mc) is designed as a “reversible jump”
satisfying (4.4) — (4.14). We first describe the mechanisms and then derive the cor-
responding acceptance probabilities, starting with the simpler combine mechanism.
The combine move attempts a transition from 8° to 8 through the following

sequence of steps:

Algorithm 4.4.2 (COMBINE) Implement the move 6° e, 99 gs follows:

1. Initialize € to 6°.

2. Choose a cluster, say iy, from the uniform distribution on the integers {1,...,k%},
i.e.

Y

i~ U{1,...,k°}

3. Determine iy, = NNsc(iy) according to 8, i.c., identify the X-Nearest-

Neighbor 15 of 11 in the current state.

4. Combine clusters 11 and 15 into cluster 1* by averaging the cluster centers and

re-allocating offspring from 1, and i to 1*, as follows:

(a) Set EC to kS — 1.
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(b) Set i* to min(iy,iz).
(¢) Set i =5 (ki) + m3,).
(d) Set ul to p?,, fori € {max(ir,iz),...,k"} and then discard pyc, .
(e) For all j such that Z]C = max(i1,19), set Z]C =",
(f) For all j such that Z]C € {max(i1,72) + 1,..., k% + 1}, set Z]C to Z]C —1.
5. Update 8° according to
oS Me, 8°, with probability a(8°,8%; Ms, Mc)
8°, with probability 1 — o(8°,8; Ms, M),
where o(0°,0%; Ms, M¢) is determined by (4.29).

The split move attempts a transition from 6% to 8° through the following

sequence of steps:

Algorithm 4.4.3 (SPLIT) Implement the move 8 Ms, 95 4s follows:

1. Initialize 0° to 6°.

2. Choose a cluster 1* from the uniform distribution on the integers {1,...,k"},

i.€.,

it~ U{L,... K9}
3. Split cluster i* into clusters 1, and iy as follows:
(a) Set k° to kO + 1.
(b) Set iy = i* and iy = k5.
(¢) Sample u from N (0,%).

(d) Set p? = ps —u and set p? = pS +u.
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(e) For all j such that zf =1, sample zf from{iy, 12}, analogously to (4.18),
independently according to
P(aS = i) GXP{—%(YJ—#i)/[ES] —1(}’1‘—#:;%)}
Z: = U1 ; 1 .
S einin &0 {3 i = #5) [2] 7 (v - 1) }

. Determine NNy = NNgs(iy) according to 8°, i.c., identify the %-Nearest-

Neighbor NNy of 11 in the proposed new state.

. Determine NNy, = NNgs(iy) according to 8°, i.c., identify the X-Nearest-

Neighbor NNy of 15 in the proposed new state.

. If NNy # iy and NNy # 1y, then preserve the current state, i.e., update
0 according to 6° Ms, gC (since the reverse move from 0° to 8° would be

impossible).

. If NNy =iy or NN, = iy, then update 8° according to
oC s, 8°, with probability o(8°,8°%; Mc, Ms)
8°, with probability 1 — a(0°,0°; My, M),
where a(8°,0%; M, Ms) is determined by (4.27).

We will specify later that a choice of (split/combine) = (Ms/M¢) (meaning

that one of split or combine will be attempted) will be made with probability 13—6 at

an arbitrary state @ of the chain. If (Ms/Mc¢) is chosen, then the Mg and M¢ move

types are attempted with equal probability, provided k& > k|, for My and k < ky; for

Ms. Encountering an inappropriate k is interpreted as “not choosing the move”, so

that this information belongs in ¢(+;-). In other words,

3RO < Ry
c(Mg;09) = % " (4.19)

0, otherwise
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and
3 i kY > Ry
(Mo 0%) = 1 (4.20)
0, otherwise.

Now we consider discrete random variables generated as part of the moves.

In the combine move, it is important to realize that (i1,42) are actually chosen as

a pair: the same pair could result if either is chosen first. So for M¢ we have

Dgys = (i1,12). If (NNgs(i1) = i3 and NNgs(iz) = 1), then either ¢y or iy could

be initially chosen in the combine mechanism, resulting in the same pair (i1,12) to

combine and hence the same move. The probability of either being chosen is k%

If (NNgs(i1) = 12 and NNgs(iz) # 1) or (NNgs(i1) # 12 and NNgs(ia) = 11),

then only one cluster choice would create the pair (i1,72). If (NNgs(i1) # 19 and
N Ngs(ia) # i1), then (i1,72) would not be chosen in M¢. Thus we have

d(Dgs) = kl—s [I(NNgs(i1) =12) + I(NNgs(ia) = 11)]. (4.21)

In the split move, the discrete quantities generated are the cluster to split (i,

with probability k%) and the new allocations for offspring belonging to that cluster.

New values are assigned to zf for j such that Z]C =1*, and the 2 possible values for

each are {11,175} = {7*, kY 4+ 1}. Hence

Dge = {i*} U {z;g for j such that Z]C =i},

and
! -1
1 o {1 (vi-n3) 1277 (v - )}
d(Dgc) = — . (4.22)
kC 1 s1—1
patmie Yactinaesn o0 { =3 (vi = 1) [ (v — 1) }
There are no continuous quantities generated for the combine move, so
q(Ugs) = 1. (4.23)
For the split move, Uge = u and
1 _% 1 -1
q(Uge) = - 12977 exp {—511’ (=] u} : (4.24)

The only terms involved in non-trivial deterministic mappings are Tye =
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{p&, u} and Tgs = {p , p }. Expressed in terms of scalars, this mapping is
/«Li,1 = Mg,l —
/«Li,z = Mg,z — U2
/“Lii,l = Mg,l +w

/«Li,z = Mg,z + uz
Note that the dimension-matching condition (4.10) is satisfied. The Jacobian of the

mapping is calculated as

6“1'51,1 6“11 1 6“1'51,1 6“1'51,1
al‘ic*,l Oufy 2 Oy O,y
6“1'51 2 6“11 2 6“1'51 2 6“1'51 2
al‘ic*,l Oy 2 Oy O,
6“152,1 6“12 1 6“152,1 6“152,1
al‘ic*,l Opfy 2 Oy O,
6“152,2 6“12 2 6“152,2 6“152,2
al‘ic*,l Oufi 2 Oui On,

10 -1 0
01 0 -1
- 10 1 0
01 0 1
= 4. (4.25)

Finally, the likelihood and prior ratios are determined simply by plugging in

the values of 8¢ and 8°:

[p(YIGS)] [p(GS)] [p(YIGS)] { (> k) p(Z2 157 ) p(k [ Fi, Fao)
p(Y[6)] Lp(6%) p(Y[09) ] Lp(nC [k )p(ZE 1k )p(kC i, hio)
p(Y]8%)

[ (Y|90)] 4 (kc T 1>n- (4.26)

Now we have all the factors required for calculation of the acceptance proba-
bilities. These are computed according to (4.11)—(4.14), using values from (4.19)-
(4.26), as follows:

a(09,0°% Mc, Ms) = min {1, R (0°,60°; Mc, Ms)} (4.27)
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where
C pSs. _ p(Y|05) p(es) C(MC,QS)
R(0°.6% Mc,Ms) = [p(ch)] {p(ec)} L(Ms;ec)] (4.28)
[d(Dos)] [Q(Ues)] ‘a(Tos)
d(Dgc)| 1q(Uge) 6(T9c)’
and
a(0°,0%; Ms, Mc) = min {1, R (6°,0°; Ms, Mc)} (4.29)
where
1

R(0°,0°; Ms, Mc) = (4.30)

R(6°,6% Mo, Ms)

Note that the strategy for generation of u in the split mechanism could be
implemented differently. In Algorithm 4.4.3, the 2 new clusters are displaced in op-
posite directions from the original cluster on the scale of the variation of offspring
about parents. This scale could be increased or decreased (i.e., generating the dis-
placement u from N (O, QEC) for some constant ¢) in pilot runs to ascertain values
vielding better acceptance rates for a given data set (although this would be some-
what time consuming, and perhaps not worth the effort). Richardson and Green
(1997) pursue a different strategy (in one dimension), generating v from a Beta
distribution and displacing by a multiple of u (depending on current estimates of
variances and mixing proportions). However, a consequence of this strategy is that
a combine move may not be reversible, since the hypothetical reverse split move
might need to generate a u outside [0, 1] to accomplish the required displacement,
a feat impossible for the Beta distribution. Richardson and Green (1997) do not
appear to account for this possibility. Analogous moves (correcting for the hypo-

thetical reverse split problem, which can be accomplished easily through adjustment

of d(-)) could certainly be implemented in our 2-dimensional scheme.
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445 (Mp/Mp) Details

The birth/death move pair (Mp/Mp) is also designed as a “reversible jump”
satisfying (4.4) — (4.14). We first describe the mechanisms and then derive the
corresponding acceptance probabilities.

The death move attempts a transition from 8% to 8 through the following

sequence of steps:

Algorithm 4.4.4 (DEATH) Implement the move ° Mo, gD 45 follows:

1. Initialize 87 to 6.

2. Choose a cluster, say i1*, from the uniform distribution on the integers {1,...,kP},
i.e.

Y

it~ U{L,..., K5}
3. Delete cluster 1* and re-allocate its offspring to other clusters, as follows:

(a) Set kP to kP — 1 and discard p,..

(b) Re-label remaining cluster-centers as 1,...,kP and re-label ZP accord-

ingly (except for j such that zf = 1*, which are handled below).

(¢) For all j such that zf = 1*, sample z]D from {1,... kP}, analogously to

(4.18), independently according to
exp {1 (y; = 1P) [Z7]7 (v, — 1) }

T S e o P )}

4. Update % according to

9# Mo, 87,  with probability a(6%,87; My, Mp)
8%,  with probability 1 — a(87,67; Mg, Mp),

where a(87,07: My, Mp) is determined by (4.41).
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The birth move attempts a transition from 8" to 8% through the following

sequence of steps:

Algorithm 4.4.5 (BIRTH) Implement the move 87 Mo 95 4s follows:

1. Initialize 87 to 6.

2. Create a new cluster 1* and give all offspring a chance to switch to this cluster,

as follows:

(a) Set EB to kP +1.
(b) Set ¥ = k5.
(c) Sample puB from the uniform distribution on A, U(A).

(d) Update ZP so that offspring can either stay in their current clusters or
switch to 1*: for all j, sample zf from {z]D,i*}, analogously to (4.18),
independently according to

/ -1
exp {1 (v; — 1) [2°]7 (v; - 8) }
/ -1 )

Spewrin 50 { =3 (v — 1) [27]7 (v; - ) }

3. Update 8 according to

8%,  with probability o(0”,8%; Mp, Mp)

oP M
87,  with probability 1 — a(87,8%; Mp, Mp),
where (O 8P Mp, Mp) is determined by (4.39).

A choice of (Mp/Mp) (meaning that one of birth or death will be attempted)
will be made with probability = at an arbitrary state @ of the chain. If (Mp/Mp)
is chosen, then the Mp and Mp move types are attempted with equal probability,

provided k > ki, for Mp and k < ky; for Mp. As with (Ms/Mc¢), encountering an

inappropriate k is interpreted as “not choosing the move”, so that this information



83

belongs in ¢(-;-). So we have

L if kP < ky;

c(Mp;0”) =3¢ (4.31)
0, otherwise
and
Lo i kB> Ry,
¢ (Mp;P) ={ 1 (4.32)
0, otherwise.

For the death move Mp we choose a cluster i* to delete and then re-allocate

its offspring. Hence

Dgs = {i"} U {Z]D for 7 such that zf ="}

P L )

kB_1 ! p1—1 )
oz o ep {4 (v = D) (377 (v, — ) |
In the birth move Mp, the only discrete quantities generated are the new

(4.33)

allocations for each offspring. The 2 possible values for the ;' offspring are z]D and

1*. Hence Dgp = 75 and

/ p—
e (-t (n-n) =7 (- n2) |

d(Dgo) =] , — (4.34)
2 Y er g e {5 (v — #8) 277 (v, - ) |
There are no continuous quantities generated for the death move, so
q(Ugs) = 1. (4.35)
For the birth move, Ugp = p,+ and
1
Ugn) = —. 4.36
Q( GD) |A| ( )
There are no non-trivial deterministic mappings, and therefore
9 (Tyn)
4.37
9(Ta) 30

Finally, the likelihood and prior ratios are determined simply by plugging in

the values of 8” and 67:
{p(YWB)} {p(eB)} _ {P(YWB)} {p(uBlkB)P(ZBWB)p(kB|khi,klo)
p(Y167)] Lp(6”) p(Y107) ] Lp(pP kD) p(ZP kD) p(EP ki, o)
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) [ZZZE%:ZJZ;} 4 (kai 1>n' (4.38)

Now we have all the factors required for calculation of the acceptance proba-

bilities. These are computed according to (4.11)—(4.14), using values from (4.31)-
(4.38), as follows:

a(0”,6%; Mp, Mp) = min {1, R (6",07; Mp, Mp)} (4.39)
where
D pB. _ p(Y167)] [p(67) C(MD30B) )
R (67,07 Mp, M) = [p(Y|9D)] {p(eD)} L(MB;GD)] (4.40)
[d(DoB)] [Q(Uef")} ‘6(T93)
d(Dgr)] [q(Ugn)] |0(Tyr)|
and
a(07,0"; Mp, Mp) = min {1, R (6”,6"; Mp, Mp)} (4.41)
where

1
R (67,6 Mp, Mp)
Richardson and Green (1997), in one dimension, implement birth/death of

R (67,6"; My, Mp) = (4.42)
empty clusters only. This makes more sense in their situation, because they model
their mixing proportions instead of enforcing an equality constraint. An empty
cluster iy in their model can be given a “weight” of zero (i.e., P(z; = i9) = 0).
We tried an experimental empty cluster birth/death move type, the result being
that births were hardly ever accepted, and there were usually no empty clusters to

choose from for a death.
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4.4.6 The Overall Form of the Algorithm

Define the move type “M(scpp)” as
Mg, with probability
M, with probability

MscBpy =
Mp, with probability

®|= = W wlw

Mp, with probability

Our Markov chain consists of a sequence of states of 8 resulting from individual
updates. Not all of these states are saved. The value of the chain is saved at regular
intervals, the index of which we call a sweep. The value of the chain at sweep t
is denoted 8. Also the generic notation 6, is used to denote the value of € at
a particular state. (If two or more instances of @, appear together in the same
equation, they are not necessarily equal).

Using terminology from sections 4.4.1 — 4.4.5, our RIMCMC algorithm for
the BVNPCP-BHM( A, n) is represented as follows:

Algorithm 4.4.6 (RIMCMC for BVNPCP-BHM) Forthe BVNPCP-BHM(A,n),
implement RIMCMC as follows:

1. Specify values for all fived hyperparameters £ = (kio, kni, m, V).

2. Choose an initial value 8¢ for the chain, in any manner desired (possibly using
the observed data), and set

0 — 9,.

3. Fort e {l,...,T}, perform the following sequence of moves:

gu-n MecEn g Mzog o Mg M (),

Due to limitations on storage space, we save the value at every 10" sweep of

each chain. The order of the sequence of move types (and the choice of random vs.
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systematic scanning, and the choice of frequency of each move type in the sequence)
could certainly be changed without affecting the limiting distribution. The rate of
convergence, i.e. the mixing properties, may depend on the strategy used. We did
not experiment with different orderings. We chose to perform dimension-changing
moves first and save the state directly after the Gibbs steps, suspecting that the
chain may require an update of (g,Z,¥) to “get comfortable” immediately after
jumping into a new dimension, possibly producing more sensible output. The X
update is performed last, essentially because our inference focuses on this parameter.
These reasons are rather ad-hoc, and we suggest future research to assess the effect
of such choices.

An important consequence of our particular construction of the dimension-
changing moves is that cluster labels (i.e. {1,...,k}) are not informative. We have

imposed no ordering restriction on the cluster centers g. Thus, for example, ;1,(1100)

and ;1,(1500) have no meaningful connection, even if k(19 = k(59 Also, even though

40

i refers to the allocation of the same offspring j on all sweeps, its value is only

meaningful in terms of the labels of u® on the given sweep. This limits our selection
of applicable convergence assessment and output analysis methods. However, we
offer a reasonable solution to the inability to analyze convergence of all parameters
in Chapter 5, and we shall see in Chapter 6 that a considerable number of output
analysis methods are still applicable. Another ramification of this “label-switching
problem” (as it is often called) is that estimation of cluster-specific features is not
possible. This is not a concern in our situation, because we are primarily interested
in modeling ¥, which we take to be common for all clusters.

Stephens (1997, Chapter 3) develops two alternative algorithms to attempt

to deal with the label-switching problem. His approach is essentially to estimate
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the cluster labels in subsets of the MCMC output with identical k. Richardson
and Green (1997), in one dimension, impose ordering restrictions on the cluster
centers and design moves so that the ordering cannot be disturbed. There are
several drawbacks of this strategy, however. Robert (1997) warns that it “may
create traps for the resulting Gibbs sampler,” citing Diebolt and Robert (1994),
and “slow convergence down.” Gilks (1997) asserts that the ordering restriction
“worsens mixing in the MCMC algorithm” and is not necessary for valid Bayesian
inference. Nobile (1997) points out that if strong prior information is available, then
its use may run contrary to the ordering constraint.

As mentioned by several authors in the discussion of Richardson and Green
(1997), a sensible ordering restriction does not appear to be feasible in more than
one dimension. Many authors agree with Nobile (1997) on “deferring to the post-
processing stage the decision on whether and which constraints to impose.” Since
the method of Stephens (1997) can only approximate labels, and we are not con-
cerned with estimating cluster-specific features, we have chosen to restrict our use

of methods to those that are invariant to label-switching.

4.5 The Effect of Incorporating Gibbs Updates
into Dimension-changing Moves

Especially if the acceptance rate of a dimension-changing move is very low, it
may be advisable to attempt to “improve” the move. One possible option is to add
to the move a final stage which updates parameters that do not change as part of
the existing move, by generating new values from their full conditional distribution
using the new values of parameters which do change as part of the existing move,

presumably making the collection of new parameter values more “in synch.” It
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seems that this would make a move more “intelligent” by encouraging it to produce
a more realistic set of parameter values and consequently increase the acceptance
probability. For example, if a split move in our RIMCMC algorithm is attempted
with only 2 existing clusters, then the supposed cluster shape/scale might change
dramatically. Would the split move benefit from an added Gibbs update of 3 given
the new parent locations and cluster memberships?

Consider a dimension-changing reversible move pair (M,/M,) in an arbitrary
RJMCMC sampler. Suppose the parameter vector can be partitioned (disjointly)
into @ = (81, 63), where all parameters whose values potentially change in (M, /M)
are contained in 6.

For simplicity of notation, the “reversible jump device” part of (4.12) is rep-

resented using a function G(-):
G(6°16" Ma) _ | c(Ma;6°) | [d(Dg)] [a(Ug)] |9(Tge)
G(6°16°; My) | c(My; 6%) {d(Doa)} [Q(an)] ‘ '
Since 8 1s not updated as part of the moves,
G(6°16° Ma) _ G(67]07, 05 M)
G(6°10°: M,) — G(6}167.65; 0;)
Also, note that the posterior ratio can be used in (4.12) instead of the likelihood

and prior ratios:

{p(eblY)} _ {p(Yleb)} {p(9b)}
p(0°Y) p(Y[6°)] [p(6)]"
The (un-truncated) acceptance probability for M, is then
p(8°Y) G(87167,65; M.)
p(0°1Y) G(67167,05; My)
p(81,65Y) G(67]6%,85; Ma)
p(61,051Y) (6567, 65; M)
( )
(

R(6°6% M, M,) =

p(8516%.Y)p(85Y) G(61]0},65; M,)
p(03167.Y)p(01Y) G(6°)67,65; M,)
(where 03 =69).

Consider an alternative move type (M!/M]), which functions as follows:
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e M!: Given the current state 8%, generate 6% exactly as in My, and then sample
b ) 8 1 y 9 p

6% from p(6,|6%,Y).

e M!: Given the current state 6°, generate 0 exactly as in M,, and then sample

03 from p(6,]67,Y).

This is a valid move pair for RIMCMC. The only change from (M,/M,;) is the
insertion of terms p(8%89,Y) into ¢(Ups) and/or d(Dge), and p(03]6°,Y) into
q(Ugs) and/or d(Dgyv) (see (4.8) and (4.7)). The new (un-truncated) acceptance

probability is

R(ea ebM/ Mé) — p( b|Y) G(0a|0?7037M0/t)
9 ’ a’ p( a| )G(G |0“,0‘2’,Mé)
_ p(01706|Y) (0 |0?7037M(;)
p(87,051Y) G(8164,65; M)
_ p(05107,Y)p(63]Y) G(67|6%,65; M)
p(05101,Y)p(01[Y) G (65|69, 6%; M])
_ p(6510%,Y)p(05]Y) [G(67]67,0%; M,) p(65]6%,Y)
p(65107. Y )p(87]Y) [ G(6°]6¢,6%; M,) p(65]07,Y)
_ p(0%Y) G(67]67,65; M,)
p(651Y) G(6%161,65; M,)

(where 8% # 8% necessarily).

Thus the component % of the posterior ratio has been eliminated from the

acceptance probability! This is not the only change from R (0“, 6% M,, Mb), how-
ever: the value of % may be different because 8% = 8% in (M,/M,) but
not necessarily in (M /M]). It is difficult to imagine cases where this difference

would be beneficial, but we do not deny the possibility. Regardless, it is apparent

that this type of move modification does not yield the anticipated effect.
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CHAPTER 5
RIMCMC CONVERGENCE ASSESSMENT

Before conducting inference using output from a Markov chain Monte Carlo
sampler, the output should be analyzed to determine a point at which the sampler
has “converged” to the proper limiting distribution. There are two distinct aspects
of convergence to consider:

1. Are the samples being generated from the correct distribution?

2. Has the entire parameter space been traversed?

It 1s difficult to rigorously verify either condition; a general strategy which we will
follow is to run several chains started at over-dispersed values. If at some point
all chains are generating samples from approximately the same distribution, then
this distribution is presumed to be the correct one (a justifiable assumption when
the Markov chain is designed properly). If the starting values are appropriately
over-dispersed, then it is also likely that the parameter space has been thoroughly

traversed as well.

5.1 Choice of Parameters to Monitor

In MCMC convergence assessment it is recommended that, if feasible, all
parameters are monitored, and if not, then at least one representative parameter of
each “type” is monitored. The output of the RIMCMC sampler (Algorithm 4.4.6)
consists of k1), B p® and ZO for each sweep t. Firstly, k and X = (041, 029, 012)

can be monitored easily, as these parameters retain the same meaning from sweep
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to sweep. As mentioned at the end of section 4.4.6, label-switching inhibits the
possibility of monitoring individual components of g and Z. However, we have
devised an approach to monitor a combination of g and Z which ¢s identifiable. A
certain number of offspring are “marked,” and the parent locations of these offspring

are tracked from sweep to sweep. We choose to monitor 3 offspring, chosen as:
1. an event near the center of a clearly defined cluster,

2. an event located between 2 clusters that are potential competitors for owner-

ship of this event, and

3. an isolated event that could potentially be the sole member of a cluster, or an

outlier in another cluster.

The purpose of these particular choices is to attempt to monitor parent locations
that are expected to fluctuate across sweeps in different ways. This approach es-
sentially boils down to monitoring Py s Mgy, and o, (6 scalar parameters in all)
for 3 chosen offspring ji, j2 and j3. These quantities retain the same meaning from
sweep to sweep, and they represent instances of both parent locations and offspring
allocations. We emphasize that the choice of offspring to track can be made after
the sampler is run, since we are only using the usual sampler output.

The point patterns analyzed in this thesis are shown in Figures C.1 — C.2, with
the offspring whose parent locations are to be monitored in convergence assessment
marked as “17, “2”7 and “3.” Detailed descriptions of the implementation of the
RIJMCMC algorithm for the Redwood data and simulated patterns are postponed
until Chapter 7, but some figures displaying results of such RJIMCMC runs are

referred to in this chapter for explanatory purposes.
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5.2 Initial Assessment

A sensible first step for any convergence assessment technique is inspection of
trace plots for each scalar parameter chosen to monitor. A collection of such trace
plots is displayed in Figure D.1 for the first 2,000 sweeps of a RIMCMC sampler
run for the Redwood data, with every 10" sweep shown, and in Figure D.2 for all
200,000 sweeps of this run with every 1000*" sweep shown. It is not possible to
ascertain “convergence” from such plots, but they can be helpful in revealing any
major problems. The trace plots in Figure D.1 show that at least the 3 parameters
appear to explore different regions of the parameter space over time, without re-
turning. This indicates that sufficient mixing has not yet occurred, and the sampler
should probably be run longer. Note that k occasionally stays at one value for long
periods of time, and the values of ¥ components appear to change along with k.
In contrast, the trace plots in Figure D.2 appear to be well-behaved in the sense
that variation is more homogeneous over time; thus there is no indication of trou-
ble. Note the occasional spikes in the trace plots of the tracked parent locations:
these represent instances of the offspring being allocated to an unusual cluster. As
long as these spikes occur somewhat regularly over time, they are not indicators of
convergence trouble.

Since we do not monitor allocations Z in their pure form, it is informative
to check allocations for at least a handful of sweeps. Figure D.3 shows allocations
at the last occurrence of k = 7,10,12 and 15, for the same RJMCMC run. Many
authors, particularly in the hidden Markov chain literature, have proposed tech-
niques for monitoring allocations (Gruet et al., 1998; Robert et al., 1998; Robert
and Titterington, 1998; Robert and Mengersen, 1997). Most involve constructing

grayscale plots of observation number vs. sweep number with the darkness of the
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plotted points representing allocations. The grayscale patterns across sweeps then
suggest whether allocations are remaining stable or fluctuating wildly for each off-
spring. Such allocation plots become useless in the presence of a significant amount
of label-switching, however, and so are not useful for our model. Even if offspring
tend to stay with the same clusters over time, the labels may change as an artifact
of the dimension-changing mechanisms.

Another useful feature to monitor as an initial assessment is autocorrelation
functions (ACF’s) of the parameters at different lags. The ACF estimates the
correlation between 1) and (19 for a given parameter 8 and lag g. High ACF’s for
a parameter indicate slow mixing, which is not in itself a sign of lack of convergence,
but does provide a warning that convergence is likely to be slow. A chain with high
ACF’s will take a long time to traverse the entire parameter space. High ACF’s
also warn that it will be inappropriate to estimate variances with the usual sample
variance estimator. ACF’s for normalized versions of parameters (except ¢) in the
RJMCMC run on the Redwood data, using every 10" sweep for the last 100,000
sweeps, are shown in Figure D.4. Normalized versions are used in anticipation of
their use to construct confidence intervals and tests, methods for which we must
carefully deal with autocorrelation. Since we saved only every 10" value from the
MCMC output, “lag-1” could technically be considered lag-10. Note the extremely
high ACF of k, which is not surprising given that dimension changes do not occur
very often. The ACF’s of logoyy,log og9, and log ¥ follow suit, since the cluster
size tends to vary predictably with k. The parameters describing cluster shape
(z(p12),1log v), however, have lower ACF’s, suggesting that shape estimates may not
vary as much with k. All tracked p parameters except p, , have extremely low

ACF; the high ACF for p; , is likely due to extended periods of time in different
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clusters.

Finally, an assessment of acceptance rates for dimension-changing moves is
useful in targeting any move types which may be inefficient. As mentioned in
the beginning of section 4.4, reasonable ranges of acceptance rates for dimension-
changing moves have not yet been established, but one could at least compare
acceptance rates for different move types. Such comparisons should not be taken too
seriously, however, as some moves may have lower acceptance rates but provide for
transitions not covered by other moves (as we suspect is the case for our birth/death
move, although for the relatively small data sets used in this thesis we cannot

evaluate this supposition).

5.3 Previous Related Approaches

Virtually none of the existing MCMC convergence assessment techniques ap-
ply to RIMCMC due to the transitions between different parameter spaces. A thor-
ough review of MCMC convergence assessment techniques is provided by Cowles
and Carlin (1996) and Mengersen, Robert, and Guihenneuc-Jouyaux (1998). Most
are univariate, considering only one parameter at a time. Currently, the two most
popular types are those developed by Geweke (1991) and Gelman and Rubin (1992).
Geweke (1991) proposes comparing (univariate) sample means of a parameter com-
puted from different parts of a chain, using variance estimates adjusted for auto-
correlation. Gelman and Rubin (1992) propose an analysis of variance (ANOVA)
type approach in which several chains are run, and the ratio of a pooled variance
estimate and a within-chain variance estimate, similar to the comparison between
total mean-square and error mean square in a one-way ANOVA with “chain” being

the factor, is calculated. The idea is that if the two variances are comparable, then
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the chains are probably realizations from a common distribution, presumably the
correct limiting distribution. This method depends on the absence of other signif-
icant factors, but for our BVNPCP-BHM, k could be considered a factor in this
paradigm, since parameters are expected to vary considerably with k. Neither of
these two popular methods (nor any others that the author is aware of) are suffi-
cient to detect lack of convergence within k. Convergence within k really should be
assessed also, since k is essentially a model indicator, and some models may be less
well-behaved than others.

Extensions to Geweke’s technique do not appear to be feasible, since output
from a RIMCMC sampler for a given k consists of a series of uninterrupted sequences
separated by visits to other values of k, and thus an autocorrelation would need to
be assessed in each of these sequences. It is an extension of Gelman and Rubin’s
method, both from univariate to multivariate and 1-way-ANOVA to 2-way-ANOVA,
that we develop in the next section. First we discuss some other extensions of their

technique which are relevant.

5.3.1 Brooks and Gelman’s Multivariate Potential Scale
Reduction Factor (MPSRF)

Brooks and Gelman (1996) introduce several different versions of Gelman and
Rubin’s convergence diagnostic and suggest monitoring both numerator and denom-
inator, not just a ratio. One of the versions is multivariate in the sense of providing
an upper bound of an analogous convergence diagnostic computed for a set of scalar
parameters.

We will focus on their multivariate convergence diagnostic, but first derive the

univariate analogue. It requires running C' > 1 chains of a MCMC sampler (with
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T sweeps each, say) with over-dispersed starting values. A number m of successive
(overlapping) “batches” of increasing length (multiples of a base batch length b) of

the output are analyzed from each chain. Let oLty Gﬁqu), denote the ¢ batch

Y Y

of length ¢b, from chain ¢ for a scalar parameter 6, where ¢ € {1,...,C}. Successive

batches for ¢ = 1,. are used. Brooks and Gelman (1996) propose monitoring

F

‘7(‘1)(9), W@ (§) and W((q))((e)) (which they call the potential scale reduction factor, or

PSRF), defined below, computed for each batch.
Defining 8l and é(')

2qb 2gb
Z #0  and 4V Z > 6
t gb+1 qu c=1 t=gb+1
the quantities of interest are defined as follows:
~ b—1 1
V@) = T w@e) 4+ (14 = ) B(8)/(gb)
qb C
and
2qb
W(‘I)(H) b 0 Z Z t
q B c=1 t=gb+1
where
1 L ~AN2
B(#)/(ab) = 7— > (Y -6
c=1

The value of ‘7(‘1)(9) should be larger than W9 (8) for small ¢, since the start-
ing values are over-dispersed; they may approach a common value as ¢ increases,
indicating that the variation is homogeneous across chains. It may happen that the
numerator and denominator happen to fluctuate together but yield a ratio close to
1, so Brooks and Gelman (1996) recommend monitoring these individually in addi-
tion to the ratio. They mention that, provided the starting values are appropriately
over-dispersed, the settling of Vi (( )) to a neighborhood of 1, and of Vi )(§) and
W@ (8) approximately to a common value for ¢ > qo, are generally adequate rea-

sons to justify inferences based on posterior means and variances of the collection of

samples {000+ glaob+2) " 1 This situation often suggests additionally that the
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chains are following the same distribution, but they warn that only approximate
equivalence of the first 2 moments across chains has been established. It is difficult
to determine how close to 1 is “close enough”: they cite a cutoff of 1.2 as a rule of
thumb in one of their examples.

The multivariate version for a vector 8 of parameters is defined analogously,

estimating posterior variance-covariance matrices instead of scalar variances:

Defining 9(') and 9(')

2gb 2gb
9 (t)
Z 6" and 6" -3 CZ > eY
t gb+1 c=1 t=gb+1
the multivariate convergence diagnostics are given by
~ b—1 1
Vog) = L2 w@(g) + (1+ = ) B6)/(eb)
qb C
and
(000 o0 )
W(g) = Z > (8Y 6 — 9
qb_ 1 c=1 t=gb+1
where
c
_ 1 50 _ g0\ (g© _ g0
BO)/(h) = z— > (616" (6"~ 8") .

c=1

The multivariate PSRF (MPSRF) is then defined as a maximum root statistic-
type measure of distance between ‘7(‘1)(0) and W@ (8):

a"/}(q)(e)a
MPSRE(6) = max 7@ (@)

where p is the dimension of . They proceed to prove that MPSRF(8) can be

-1

‘7(‘1)(0), and that it

represented in terms of the maximum eigenvalue of [W(q)(e)]

V(g (6)
> Wid)(6;)

provides an upper bound on the collection of univariate PSRF’s , where 6,

is the 7'M scalar component of #. We now present these results in generic notation.

Lemma 5.3.1 For two non-singular, positive definite and symmetric p X p matrices

M and N,
aMa
max
ac®? a’Na

where X is the largest eigenvalue of N~ M.

=\

Y



98

Proof: See Mardia, Kent, and Bibby (1979, Theorem A.9.2). O
Lemma 5.3.2 Let M and N be two non-singular, positive definite and symmetric
p X p matrices, and denote the diagonal elements as {my,...,my} and {ny,...,n,},
respectively. Then

a'Ma m;

max > max —.
ac®® a'Na — ie{1,...p} n;

Proof: Let i; denote a p x 1 vector of zeroes with the j*® entry replaced by 1.

Then
a'Ma 1 Mi; m;
max > max ——— = max —. [
ac®? ¢/’ Na ~ je{i,...p} 1;N1j ie{l,..p} N;
Note that the collection {vi,...,v,} of diagonal elements of the multivariate

version of V are equivalent to the univariate versions, and that the same holds
for the diagonal elements {wy,...,w,} of W. Thus Lemma 5.3.2 establishes that
Brooks and Gelman’s MPSRF is an upper bound of the unvariate PSRF’s. They
suggest monitoring this MPSRF, and also f <‘7'(‘1)(0)> and f (W(@(8)) for some

real-valued function f(-), such as the determinant.

5.3.2 Brooks and Giudici’s Proposed RJMCMC Diag-

nostic

Brooks and Giudici (1998) introduce the first proposed method, a univariate
one, specifically designed for RIMCMC convergence assessment. The basic idea is to
compute various decompositions of the estimated variance of a collection of samples
of a scalar parameter from C different chains. Two factors determine the decom-
positions: “model” (the indicator of the different parameter spaces) and “chain.”
The scalar parameter chosen must have the same meaning across all models. They
claim that the decompositions correspond to three pairs of variance estimates, with

each member of a pair estimating the same quantity. Thus they propose following
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the method of Brooks and Gelman (1996) by monitoring each of these 3 pairs and
the 3 ratios they produce.

Brooks and Giudici do not specify how batches should be chosen for analysis.
For simplicity of notation, we will consider calculations for one batch only. Suppose
C > 1 chains of a RIMCMC sampler are run. Let 6 be a scalar parameter in the
chain (with equivalent interpretation across models), T' denote the batch size, and
M denote the total number of different models (different parameter spaces) visited
by any chain for this batch. Define 87, as the " value of # occurring in chain ¢ and
model m. Also define R, as the number of times model m occurs in chain ¢ and
R.,, as the number of times model m occurs across chains. Note that R.. = T and
the total number of sweeps in the batch over all chains is CT. Brooks and Giudici
(1998) define the following quantities (note: the subscripts on the left-hand side are

parts of the names, and do not correspond to values of indices on the right-hand

side):

Bn(9) = 2%7_1 (5.1)
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where

0%‘
Il
N =
N
g
oqi

3

=)
I

: 1 .

C M Rem

3D 3D 3

c=1 m=1 r=1
(Note: we have corrected two obvious typographical errors in the definitions of W,

and W,.).

Brooks and Giudici claim the following:

1. Both ‘7(9) and W, () should well approximate the true variation of # under the
stationary distribution of the Markov chain (and this comparison is essentially

the original Gelman and Rubin comparison)

2. Both W,,,(8) and W,, W, should well approximate the true mean within-model

variance

3. Both B,,(8) and B, W, should well approximate the true between-model vari-

arce.

It is true that, in the case of equal R.,, counts, these 6 quantities correspond
to the descriptions they attach using ANOVA terminology. However, in the case
of unequal R, counts, the meanings of the quantities are unclear. In general, the
R, counts will be dramatically different, as some models are less likely than others
and hence visited infrequently. Brooks and Giudici encounter this situation in their
own example: the second and third comparisons break down when one of the chains

visits a rare model once late in the sequence. It is easy to see why this occurs: the
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comparisons are based on unweighted sample variances of means, allowing imprecise
sample means from rare models to heavily influence their values. While it may be
useful in some situations to have such diagnostics to detect rare model visits, we do
not feel that this satisfies the definition of a convergence diagnostic. It is perfectly
fine for some models to be more unlikely than others. We reconsider Brooks and
Giudici’s apparent initial motives and develop a strategy from scratch by considering

appropriate two-way unbalanced ANOVA models.

5.4 A New Multivariate Strategy for RIMCMC
In this section we design a convergence diagnostic especially for RJIMCMC
situations in which different parameter spaces (“models”) are indexed by some pa-

rameter in the chain. Our convergence diagnostic detects the following:

1. variation between chains (i.e., the target of the original Gelman and Rubin

diagnostic: variation that is not homogeneous across chains),

2. an interaction between models and chains (i.e., between-model variation that

differs from one chain to another), and

3. significant differences in the frequencies of model visits from one chain to

another.

Any one of these three conditions would indicate that the chains are not living

in the same stationary distribution, and hence that convergence has not occurred.

5.4.1 Forms of Variation Estimators
Suppose we have a RIMCMC sampler which produces output of a parameter

vector O, with some k& € O indexing “model” and 8 C O a vector of parameters
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which retain the same meaning across models (k ¢ 8). Let the output of 8 be
represented as <0(1),9(2), .. > Suppose C > 1 chains of this sampler are run for
the same number of sweeps. For simplicity of notation, we will consider output
from one batch of size gb only, i.e., <0(1qb+1), ey 0(12qb)> ey <0(gb+1), e ,G(C?qb)> for
some ¢ and base batch size b. We now represent this collection in a more convenient
notation (as in section 5.3.2), which we describe completely below.

Let

0 = vector of parameters retaining same interpretation (5.3)

across models

f# = arbitrary scalar component of 6 (5.4)
C = number of chains (5.5)
T = batch size (this many sweeps per chain) (5.6)
M = number of distinct models visited by any chain (5.7)
0’ = value of 8 for v occurrence of (5.8)
model m in chain ¢
R.,, = number of times model m occurred in chain ¢ (5.9)
R, = EC: R (5.10)
- Czll Rem
6, = . ; o (5.11)
) | M Ben i
6. = T;;ecm (5.12)
) | O Rem i
6, = E;;acm (5.13)
C M Rem
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Our convergence diagnostic is based on the following estimates of variation:
(note: the subscripts on the left-hand side are parts of the names, and do not

correspond to values of indices on the right-hand side):

(6r,, —6.)" (5.15)

Wih) = G > (B b (5.16)
Wn(0) = CTl_MZZ - (6, —6.)" (5.17)

1 Y

W,.We(8) = mz_: >, z_: (650 = 0o (5.18)

Note that these quantities may be interpreted as total variation (‘7), variation
within chains (W.), variation within models (W,,), and variation within models
and chains (W,,W,). The first of two comparisons we will use involves V and W,
which are defined in the same way as Brooks and Giudici (1998), and correspond
(except for minor differences in multiplicative factors) to the original Gelman and
Rubin diagnostic. The second involves W,,, and W,,, W, which are defined differently
so as to correspond meaningfully to elements of appropriate ANOVA models. We
establish these correpondences, for both pairs of variation estimates, in the next

section.

5.4.2 Interpretation from an ANOVA Perspective

The output from the RIMCMC sampler can be considered as a collection
of observations from a factorial design, in which the factors are “chain” and/or
“model.” An analysis of variance (ANOVA) can be used to assess the significance

of factors and interactions. The primary exception to the usual assumptions of



104

ANOVA approaches is that the samples are not independent. However, we shall
see that certain quantities constructed from ANOVA features are still useful in sug-
gesting and interpreting our convergence diagnostics. Consider the three ANOVA
models defined in Tables 5.1 — 5.3.

ANOVA 1
00 = 1+ Qe+ €g)
where: ozcl':fl'N(O, o)
. .
ecm(l) ~ N(()?O-zr(ch))
Source df SS
chain C -1 Tzcczl (é'c. — é.’.)z
error(chain) C(T —1) Y, Yol S0 (6, — 6:)°
tOtEL]. CT - ]‘ ECCZI E%:l Ef”:”l" (ezm - g>2

Table 5.1: ANOVA 1: One-way ANOVA with factor chain

(random), balanced.

” which is cer-

We represent model as a “fixed” factor and chain as “random,’
tainly debatable. However, basically the same conclusions are reached regardless
of how the factors are treated (differing only in description of effects and minor

coefficient changes). For example, if model were treated as random, effects would

be described in terms of o2,

not the individual effects {3,,}. If chain were treated
as random, effects would be described in terms of {c.} instead of o2 .

Winer (1971, pp. 212 and 403) establishes the expressions for degrees of
freedom entries. All terms which have the same notation in the three ANOVA’s

(e.g., by Qcy B, 02) are equivalent. The error terms (ecm(l), €om(2) ecm(3)) are labeled
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ANOVA 2

00 = 1+ OB + ezm(z)
. M J—
where: Yo Bm =0

. idd
ecm(Z) ~ N(()? O-(zr(mo))
R
Source df SS
M - n-\2
model M-1 Yo B (9.m - 9..)

error(model) CT — M) Ecczl 2%21 Ef:”f (6r,, — é.'m)z
total CT -1 ECCZI E%:l Ef”:”l" (ezm - g>2

Table 5.2: ANOVA 2: One-way ANOVA with factor model
(fixed), unbalanced.

differently because they are in general not equivalent for the three models. In

comparing entries in the ANOVA’s with (5.15) — (5.18), it is clear that

V = MS for ANOVA 1, (5.19)
W, = MSeen for ANOVA 1, (5.20)
Wi = MSer(mo) for ANOVA 2, and (5.21)
WuW. = MSe(chxmo) for ANOVA 3, (5.22)

where “MS” denotes mean-square. We can of course not claim that an ANOVA
model is a realistic description of the output from parallel chains of a RIMCMC
sampler, since the assumptions of independence and normality in general do not
hold. However, the effects of dependence are likely to be at least approximately
cancelled out since we are focusing on ratios of mean-squares. The convergence

diagnostics of Gelman and Rubin (1992); Brooks and Gelman (1996); and Brooks
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ANOVA 3

> er

D) S o Rew (6, —

(chx mo))

C
TEC:I
E%:l Rm

et Yot 2rey (B

C

0, —

6, +6.)
—6,,)"

00 = 1+ e+ B+ (@B)em + €3
where: e R N(0,03)
Emzlﬁm =0
(@B)em =~ N(0, 0% xmo)
€om(3 )1:\9 N(0,c?
O = 3T Lot O’
Source df
chain C -1
model M-1
chain xmodel (C—1)(M —
error(chain xmodel) C(T-M)
total CT—-1

PRTD D D i (8

—g)?

Table 5.3: ANOVA 3: Two-way ANOVA with factors model (fixed), chain

(random) and chainxmodel interaction (random, unrestricted), balanced across

chain only.

and Giudici (1998) all make this same implicit assumption. Furthermore, we will not

rely on approximate normality for inferences. Thus we will proceed by considering

the sampler output as occurring approximately according to an ANOVA model (not

specifying yet which one(s), but using Tables 5.1 — 5.3 as appropriate).

Derivations of expected mean-squares for the three ANOVA models (shown

in Appendix A.6) reveal that the expected values of (5.15) —

assumptions are given as follows:

(5.18) under ANOVA



EWC = O-(zr(ch)

EW,, = o2
(C-1)T

EV:<@®+P———U

er(chxmo)

2

‘oT—a1 "y

EW,,W. = o2

er(chxmo)
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(5.23)
(5.24)

(5.25)

(5.26)

(5.27)

(5.28)

(5.29)

If the set of within-chain model frequencies is equivalent for all chains (i.e., R =

R'T’" Ye,m), then (5.25) — (5.28) simplifies to_
EW er(Ctho —I_ [7_
For large T' (and any {R.m}),

E‘/} ~ O-(zr(ch)—l_

and

2
Tch +

C37? - C?MT

-

-

(5.30)

(5.31)

(5.32)

(5.33)

(5.34)
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2 R?
ﬁzz (CRem = Rom) 5 )] o2 e (5.35)

If additionally the set of within-chain model frequencies is equivalent for all chains
(Rem = R'T’" Ve,m), then (5.32) — (5.35) simplifies to (for large T'):

C-1 C—-1
EWm ~ O-(zr(ctho) + |: C :| Uzh + |: C :| Uthmo‘ (536)
Notice that (5.26) and (5.27), in the presence of chain and model effects,

respectively, increase as the model frequencies across chains, R, deviate more from
the frequencies R'T’" that would occur if the set of within-chain model frequencies
were equivalent for all chains.

The expression (5.28) can be characterized as follows. Let

X=X1+Xo+X3

where
CcT
X = ——
! CT— M
RZ
X = epo Mz;z_:l R
c M
2 R?
X = A cm T -m — .
° CT;; (CRem = Bm) R
The ranges of Xy and X3 can be determined from consideration of two extreme
cases,
A Ren = RTm Ve, and
R, forec=¢c,
B.  Ren,= for some {c},...,cy},
0, for ¢ #£ ¢,
to be
-CT -T
ST . €Y ——
CT—-M ="~ CT-M
and

2(C — 1) e ,
< X <7§
0 ’ CT mle"”
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Also, X is strictly positive because (i) if case A holds, then X = (C?T__lj)\;, and (ii) if
case A does not hold, then Xj is strictly positive. In general, X increases (although

not necessarily monotonically) as the set of within-cell model frequencies becomes

less homogeneous across chains.

Thus we can conclude the following about the ratios L{TE—V‘IA//C and E%VZ’;VC:

1. % > 1, with % = 1 indicating the absence of a chain effect. The greater

EV

> the stronger the chain effect, with each term in the numerator and de-

nominator stabilizing as T' — oo and thus preserving the validity of the mag-

nitude as T — oo.

2. EEVW% > 1, with Engrf/lv = 1 indicating:

(a) the absence of a chain effect, and
(b) the absence of a chainxmodel interaction, and
(c) either (i) no model effect or (ii) equality of the set of within-chain model

frequencies across chains, or both.

The greater the violation of any combination of these three criteria (2a)-

(2¢), the larger EEVW% becomes. The relative weights of the three criteria

as T — oo (i.e., the sensitivity of the ratio to violations of each of the three
criteria) are not yet fully understood. We can at least reason by (5.36) that
when the set of within-chain model frequencies are somewhat homogeneous
across chains (i.e., CR., ~ R., Yc¢,m), then the ratio has approximately
equal sensitivity to (2a) and (2b), and so either a significant chain effect or

chain xmodel interaction should be detected.

These properties clearly suggest the design of a convergence diagnostic based
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Wm

on the two ratios -— and . We suggest the use of both ratios, because it may

We
help to narrow down the cause of any violations of convergence. In the next section,
we show the exact form of the diagnostic technique we propose.

Expressions analogous to (5.1) and (5.2), represented with the proper degrees
of freedom terms in the denominators, yield expected mean-squares that do not ap-

pear to be useful for comparison purposes. Further research is needed to determine

what a ratio based on analogues of (5.1) and (5.2) would actually detect.

5.4.3 The Convergence Assessment Strategy

Define the following multivariate versions of (5.15) — (5.18):

R c M Rcm
V(o) = e (5.37)
c=1 m=1 r=1
C M Rem
r n \

W.(0) = T e D DI CA ~9.) (5.38)
c=1 m=1 r=1
M Rem

Wal6) = = MZ Z 6,) (6, —6.,) (5.39)

W, W.(8) = ﬁzzz(er 9., (0n, —6.) (540

Define the following set of potential scale reduction factors, for a parameter

vector § = (64,...,0,), using (5.15)—(5.18) and (5.37)—(5.40):

PSRF\(6;) = : 5.41
W (6:)
PSRF,(0;,) = ———— 42
MPSRF;(6) = maximum eigenvalue of [WW,.(0)]™" ‘7(0) (5.43)
MPSRF;(0) = maximum eigenvalue of [WmWC(G)]_l W (0). (5.44)

By Lemmas 5.3.1 and 5.3.2, we have that

MPSRF(0) > max PSRF,(6;) and MPSRF,(0) > max PSRF5(8;). (5.45)
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Our convergence assessiment technique consists of the following steps:
Algorithm 5.4.1 (RJIMCMC Convergence Assessment) Implement the fol-
lowing procedure as a convergence assessment technique for RIMCMC applied to a

model with parameters ©, using (5.15)—(5.18), (5.37)—(5.40) and (5.41)—(5.44):

1. Identify a parameter k € O which is an indicator of “model” and select a
parameter vector @ = (0y,...,60,) C O consisting of quantities which have the

same interpretation across k (but with k ¢ 6 ).

2. Sitmulate C > 1 chains of equal length T via RIMCMC, with over-dispersed

starting values.

3. Choose a base batch size b (Brooks and Gelman (1996) recommend, for exam-

ple, b~ %)

4. Let the notation S(q)(-) represent a statistic S computed for the ¢ batch

(0(1qb+1),...,0(12qb)), ,(0(6?6+1),...,0gqb)). For batches ¢ = 1,..., L, do

the following:

(a) Plot MPSRFl(q)(G) vs. q and MPSRFZ(‘I)(G) vs. q (separately or to-
gether).

(b) Plot the mazimum eigenvalues of ‘7(‘1)(0) and WJ‘”(Q) together vs. q.

(¢) Plot the mazimum eigenvalues of Wm<‘1>(0) and WmWC(q)(G) together vs.
q.

(d) Optionally plot PSRFl(q)(Gi) vs. q and PSRFZ(‘I)(GZ') vs. q.

(e) Optionally plot the numerator and denominator of PSRFl(q)(Gi) together

vs. ¢.
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(f) Optionally plot the numerator and denominator of PSRFZ(‘I)(GZ') together

vs. ¢.

5. Determine qy such that for g > qo the plots in Step fa have settled close to 1,
and the plots in Step 4b have settled approxzimately to a common value, and

the plots in Step 4c have settled approzimately to a common value.

6. Discard the first qob sweeps from each chain, and then pool the remaining ones

together to use for inference.

We prefer the maximum eigenvalue to the determinant for monitoring indi-
vidual matrices, since it is on the same scale as the univariate variance estimates
and hence can conveniently be displayed in the same plot. The method can be per-
formed on more than one parameter vector . It may be useful to use a collection of
related sets of scalar parameters in order to target which sets are mixing faster than
others. The purpose of the MPSRF is to provide a safe (conservative) alternative
to the monitoring of a large number of scalar parameters individually. However, the
individual scalar parameters can still be monitored (Steps 4d—4f), providing more
detailed information.

For our BVNPCP-BHM(A, n) model, we monitor two collections of parame-
ters, (log o11,log 022, 2(p12)) and (1,1, fhj, 25 [ja1s Hja2s Hjals fjs2), Which are defined in
section 5.1. The associated plots for the Redwood data and all simulated patterns,
for chains of length 20,000 (runs of length 200,000 where every 10™ sweep is saved)
are displayed in Figures E.1 — E.13. Very fast convergence is implied in each case.
Further research is needed to study the performance of this convergence assessment
technique, since we have only applied it to a small collection of similar datasets for

only one type of model.
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CHAPTER 6
RIMCMC OUTPUT ANALYSIS

In this chapter we present the details of methods used for analysis of a post-
convergent RIMCMC sample (convergence being determined by Algorithm 5.4.1).
Results for these methods as applied to our real and simulated data sets, along with

those from the composite EM technique, are discussed in Chapter 7.

6.1 Notation

Suppose we have run a RIMCMC sampler for the BVNPCP-BHM(A, n) and
0 = (0y,...,6,)is some p-dimensional subset of parameters of the model (as opposed
to Chapter 4, where we took 8 to represent all unknowns). Assume convergence

assessment has been implemented and a collection of values from a total of T post-

convergent sweeps from C' chains (% sweeps from each chain) is to be used for
inference. Some methods need to differentiate between output from different chains,
while others need to differentiate between output with different k, while still others
analyze all output collectively. So, we will use the following sets of notation as

appropriate, sometimes interchangeably provided the meaning is clear:

0) = collection of T values of 8 = (01,...,8,) consisting of

% = T, post-convergent sweeps from each of C chains

Il
TN
)

=

=3

=
S—

Il
~~
T~

I

=
=
=

\g|

=

N

=
~—
A~
=
=
t/-\
=

4

=

N

=
~—
~——
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= <9(1;1)7 7g(Tch 1)7 ) 79(1;0)7 o e(Tch§C)>
and
gl — <9<1;c>7‘ 9T c>>
9 — Z g ()
Tch
t=1
() RN
6" = =N oW
T
and
0 = set of values at the T} sweeps for which &) = k

— <9<1|k>7m79<Tk|k>>‘

6.2 Preliminaries: Tools for Analysis

6.2.1 Autocorrelation Function
The lag-g autocorrelation of two scalar components 6; and §; (¢ could equal j)
from chain ¢ is defined as the correlation between Gl(t) and G;t—l_g). It is estimated by

the autocorrelation function (ACF):

ACF, <9£.;C) 9(.;c)> B ?;}11_9 <(91(tc ; EG;H—QC é > | (6.1)

- = (e = a) (68— 6,0)
Note that in general ACF, (8", 61) # ACF, ( ) 60).
Define ACF, (95.*0)) as ACF, (9 ) ef.*C)) and
ACF, (0“0)) — p x p matrix with (i, /) entry ACF, <9§*C>, (9;'”)) . (6.2)

6.2.2 Batch Sampling

One of the methods we will use to construct approximate confidence intervals

and regions for RJIMCMC parameters requires estimation of posterior variances.
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Let ®2 be the true posterior variance of a parameter #;. The usual sample variance

estimator

1 o 2
- (g(f) _ 9('))
oo (A
will tend to underestimate ®? if there is significant positive autocorrelation in the

()

chain (which there typically will be). One possible remedy is to separate 6;” into

batches (consecutive within each chain) and then compute the mean of each batch
and the sample variance of the batch means. These means should exhibit less

autocorrelation than the samples themselves.

()

Suppose we separate 6, into m batches (consecutive within each chain), each

of size b, with the sample means of the batches denoted
g1 gl)(m)

5y s oYy

Then if these batch means are relatively uncorrelated,
B (1) = g X (8 a0

is a better estimate of ®* (Roberts, 1995, ]?)_.150). Usually the strongest correlation
between batch means is the lag-1 autocorrelation. Ripley (1987, p. 155) suggests
choosing b large enough so that the ACF; of batch means is below 0.05. Since
we wish to use samples from different chains, we compute the AC'F) for a given
batch size separately in each chain, and choose b large enough so that the ACF; of
size-b batch means is below 0.05 for all chains. For each candidate b we compute

Tgh, where “|-|” denotes “greatest integer

m = L%JC and r = integer remainder of
less than or equal to”, and then use % batches of size b from each chain, ignoring
the first r sweeps of each chain, to compute the C' ACF}’s.

We start with b = 10 and increment by 10 (instead of 1, to save computation
time) until we encounter one (by, say) which achieves the ACF; = 0.05 cutoff for all

C chains. Then we see if we can increase by (to by, say) and still maintain the same
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number of batches (my, say). (Since we only try multiples of 10 for b, the remainder
r described above may be large enough at by so that we can increase the batch size
and still maintain the same number of batches, thus using as much of the output

as possible). Finally, we then combine all batch means for all chains and estimate

o2 by
o N b mio N
() = p2 () = 1 ()@ _ g0
Vargs (90) = 3% (80)) = ml_lzjﬂ (o ) (6.3)

The number of batches, my, should be large enough for this estimate to have rea-
sonable accuracy. In our analyses, we make sure that m; > 12; we are able to find
a suitable by in each case, and in most cases m; is much larger than 12.

An analogous vector (multivariate) version of the batch sampling variance
estimate can also be calculated. The choice of batch size is not as straightforward,
however. There may be (cross)-autocorrelation between different scalar components
of @, and so the matrix form of ACFy, (6.2), must be checked. Due to random
fluctuations in the ACF, it is very difficult to find a batch size for which all C' x
p? AC Fy’s fall below the suggested cutoff. We experimented with independently
generated sequences (theoretical ACF, = 0 V ¢) and encountered a surprisingly
large amount of variation in batch mean AC F’s. Thus we follow a different strategy
than in the scalar (univariate) case and choose a batch size by such that each cross-
autocorrelation estimate in each chain has fallen below the cutoff of 0.05 at some
point in the past, i.e. for some b < by. As before, we increase by if possible to
by to obtain the largest possible batch size for the same number of batches (m;)
corresponding to by. Let @ be the true posterior variance-covariance matrix of a

parameter vector 8. We then estimate ® by

Varss <9<.>> — B <9<~>> __h i @5-)(;) B g)<~>> @5-)(;) B g)<~>>" (6.4)

m1—1

J=1



117

6.2.3 Circular Data Methods

When the anisotropy parameterization of X is used (see Definition 1.1.10), the
parameter ¢ must receive special treatment since it is a circular (or, directional or
angular) parameter. Actually, ¢ is an azial parameter since it takes on values in an
interval of length 7 rather than 27. For now, consider a circular random variable n
which takes on values in [0, 27). We will discuss special accommodations for an axial
variable at the end of this section. For n, values near 0 should be considered “close”
to those near 27. Fisher (1993) and Mardia (1972) provide a wealth of methods for
the analysis of circular data, and we present a review of relevant techniques here.

Let 1y,...,n, be an independent random sample from some circular distribu-
tion defined on [0,27). The analogue of a mean for linear data is referred to as
the circular mean, or mean direction. Suppose the true mean direction is w. The

sample circular mean 1 is defined as

arctan (%) , ifS>0andC >0
n=®(n) =1 arctan (%) + fC <0 (6.5)
arctan (%) +2m, S <0andC >0

where

3

C = Zcos n;) and S = isin(m)

=1

The p** centered samp trigonometric moment is defined as

Z cos[p n)] + ll Z sin[p(n; — 1)].

]:1 7=1
The first two are

R :/\/h:vaz—I-Sz:lZCos(n —
n ni:l

(also called the mean resultant length) and
~ 1 —
Ro= M= 13 cosl20m )

n <
=1
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A commonly used measure of spread is the sample circular dispersion,

~ 1—N,
n) = ——.
() 2R*?

A nonparametric confidence interval for the mean direction w is (see Fisher, 1993,

] . i\*
ntarcsin | za [ — . (6.6)

p. 76)

n
Note: if the computed value of za <g> ® s greater than 1, this confidence interval is
ill-defined, but at least covers [77 — 50+ g] We are not interested in the variance
of the posterior mean of ¢, but rather the variance of the posterior distribution of
¢. Thus we will use confidence intervals of the form 7 + arcsin (Z% <8\> %>

An analogue of the linear correlation coefficient for circular data is the sample
circular correlation coefficient. For a paired sample of directions (91, (1), ., (M, Cn),
it is defined as (Fisher and Lee, 1983)

oy sin(n; — 1) sin(G — ¢;)
~ ) 1<i<y<n

The value of pr lies in [—1,1], with pr =1 = n=((+dy) (mod 27) for some

do and pr = =1 = n=(=(+do) (mod 27) for some dy.
Also, a circular analogue of the ACF} is given by

prg(n) = pr caleulated from (11, 7g11); - s (1hn—gs71n)

> sin(n —n;)sin(nirg — Mj4g)
1<i<j<n—g

)

2
l( > Sinz(m—m)>< > Sinz(m+g—m+g)>]
1<i<j<n—g 1<i<j<n—g

Batch sampling can be implemented for circular data as well, to estimate

the circular dispersion 6. Suppose that n € 8 is a circular parameter sampled in

RJMCMC. A batch size by is chosen large enough so that pr, (77('?0)) < 0.05 for
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¢=1,...,C (and increased to b; to keep the same number of batches m; > 12,
as before). Then the estimate is calculated from the sample circular means of the
batches:
Sps(n') = byd (G(nOM), . G(n0m))
If a circular variable 7 is confined to [a, b] where |a—b| = 2?”, it is called p-azial.
For example, ¢ as defined in Definition 1.1.10 is 2-axial with ¢ = —Z and b = 7.
Analysis of p-axial data is performed by first transforming to l-axial (“vectorial”)
data:
n — 0" =[p(n—a)l (mod 27), (6.7)

performing all analyses on the vectorial data, and then back-transforming the results

(e.g., confidence interval endpoints) back to p-axial form via
*

77*—>77:%—|—a (6.8)

Fisher (see 1993, p. 37).

6.2.4 Posterior Density Estimates

Perhaps the most useful and descriptive display of RIMCMC output is via
posterior density estimates. For the parameter k, these take the form of simple
histograms. For a sample #) of a continuous linear parameter (perhaps bounded),
we calculate a nonparametric density estimate according to the density function

in S-Plus 4.5 for Windows (Mathsoft, Inc.), using default options. This employs a

range(("))
logo (T)+1"

equally spaced points in the range [min(#)) — 0.75WW | max(#)) 4+ 0.75W].

Gaussian window of width W = The density estimate is evaluated at 50

A nonparametric density estimate can also be computed for samples of the

anisotropy direction ¢(). For a sample of circular data (ny,...,n,) € [0,27), a
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quartic kernel is used (Fisher, 1993, p. 26):
0.9375(1 — ?)?, if 1<e<1

0, otherwise.
The bandwidth Ay for n > 15 is chosen as

ho = \/?n_lgﬁ_%
where
2R + R* + IR, if R <0.53
R=4{ —04+139R+ 22 if0.53 <R <0.85
L if R > 0.85.

R3—4R2+3R"
Then the nonparametric density estimate at a point x is

C/Z\(x):nihozw<min(|x_m|vh20ﬁ_|x_77i|)>‘ (69)

=1

We choose to evaluate (6.9) at 128 equally spaced points in [0,27). The density

estimate at x for ¢() is computed as 6/1\(2 [:1; + %])

6.3 Assessment of Model Adequacy

Before proceeding to conduct inference using post-convergent RIMCMC out-
put, it is wise to perform some type of “model adequacy” check to see if the data
conforms to the BVNPCP-BHM assumptions. Since k really indexes different mod-
els possessing different parameter sets, and we use a vague prior for k, it makes
more sense to assess model adequacy separately for each k. Many methods are
available to perform model-checking using MCMC output. We can apply these
methods to subsets of RIMCMC output separated by k. The label-switching issue
(see section 4.4.6) is not a deterrent for any model-checking approaches, since we
will consider each sweep of the chain as a separate instance of the model. We ex-

plore two different paradigms for model adequacy assessment: (a) use of discrepancy



121

measures with posterior predictive densities, and (b) cross-validation.

6.3.1 Posterior Predictive Densities and Discrepancy
Measures

For this section let Y°P* denote the observed values of offspring locations and
Y™ denote a replication of Y with the same sample size, n. The posterior predictive
density p(Y*|Y°P®) describes the marginal distribution of the locations of a new set
of offspring conditional on the observed offspring locations. A discrepancy measure
D (Y;8) measures disagreement between the data Y and model with parameters
0; it may reduce to D(Y ), which measures deviation of Y from model assumptions
inherent for all 8.

If the distribution of D (Y;8) under the model assumptions is known, then
a quick assessment can be implemented by computing D <Y°bs; 5(%)), where 5(%)
is the mode of p <Y°bs

0('|k)>, i.e., the maximizer of the model likelihood over all
posterior samples. This choice of ] I seems sensible since it represents the “best”
model for this k. A Bayesian p-value can be computed as
po =P (D (Y*;?"“) >D (YO‘)S;E““)) . (6.10)
If pp is close to 0, then the discrepancy between Y°b* and 0 o is excessive; if pp is
close to 1, then the discrepancy is significantly less than would be expected under
natural sampling variability. Either extreme indicates a poor fit to the model.
Another method to obtain a Bayesian p-value, Monte Carlo-style, is to com-
pute D <Y°bs; 0(t|k)> and D <Y*(t); 0(t|k)> fort =1,.... Ty, where Y*® is a sample
from p <Y*

0(t|k)>. A Bayesian p-value with similar interpretation as (6.10), except

that the discrepancy measured is between Y°” and 6" overall, is

Ty,
1
pp =7 > 1[0 (Y:010) > D (y*:0W)] (6.11)
t=1
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the proportion of times that data randomly generated under model assumptions
displays greater discrepancy with 8"%) than does the observed data.

As far as choices of forms of D (+;-) are concerned, Gelman, Carlin, Stern, and
Rubin (1995, p. 172) recommend using more than one and trying to “reflect aspects
of the model that are relevant to scientific purposes to which the inference will be
applied.” Our approach uses two forms of D (-;-): one a goodness-of-fit statistic for
bivariate normality, Dcg (+; ), and the other a measure Dy (+;-) of the discrepancy
between ¥ estimated from the data (given ZU® | but not p® or E(t|k)) and D).

The first, Dcr <Y; 0(t|k)>, is based on the bivariate normality goodness-of-fit
technique given in Johnson and Wichern (1992, pp. 158-164). Basically it estimates
g and X based on Y and ZU* only, and then uses these estimates to construct
normal-theory based approximate 100(1 — «)% confidence regions (perhaps more
appropriately called prediction regions) for individual y;’s. Then the number of
y;’s falling within their confidence region is counted and compared to the expected

tlk)

count, (1 — a)n. Using Z{® only, compute for each j € {1,...,n}:

n

~(tk) 1 .
B = nmk)ZZﬁ yi» 1=1,...,k

7 7=1

n

& (k) 1 ek am \
> T a1 Z <y7 - ”iﬁtlg)> <YJ - Il';'t|g)> (6.12)

j:l J J

/
tlk ~ <t 7! -
) = (- ) B (- al)

J J

where
n

n, = E Zji-

J=1
Under bivariate normality and correct allocations Z, d? ~ x%. Choose a confidence

level o (we use a = 0.5, as suggested by Johnson and Wichern (1992)) and compute
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3(1 — @), the (1 — a)™ quantile of 2. Then define

Dex <Y; 0<t|k>> - %il <[d§}“"“) > 31— a)> . (6.13)

J=1

Note that nDcr <Y; 0(t|k)> ~ Binomial(n, o), so that an approximate p-value

for this discrepancy measure is
«. 7 ClIR) obs. (1K)
pp = P<DCR<Y;9 >ZDCR<Y ;0 >>

DCR <Y*; §(|k)> — DCR <Y0bs; 5(|k)> —

_p >
a(l—a) a(l-a)
Dcr <Y0bs5§(.|k)> — @
= P|lz> = where z ~ N(0,1).
a(l—a

27tk
Additionally, a Chi-square plot of [dﬂ TR s, X2 (W) could be displayed,

with deviations from a straight line indicating various types of violation of bivariate
normality (see Johnson and Wichern, 1992, p. 161).

We also implement the Monte Carlo approach by simulating a dataset Y+

7z
J

for each 89 for j = 1.....n generate y*gt) ~ N (u(t('t’f,f),zl(“’“)). Then we
compute the Bayesian p-value as in (6.11).
The second discrepancy measure we use, Dy <Y; 0(t|k)>, utilizes the asymp-
- (tlk
totic distribution of an estimator E( ) to judge its “distance” from the true value

SR Tt is computed as follows.

Sltlk)
Compute X' " as in (6.12), and let

011 012 ~ (t|k) S11 S12
n(tlk) — ., X = 7
J12 022 | S12 522
a1 S11
(tlk) _ ~(tlk) _
o — 099 9 o - S99 9
J12 512
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and
2 2
2011 2012 2011012

(k) _

20122 20222 2012092

2
2011012 2012022 011022 + 012

& (tlk)

It can be shown that %F(tlk) is the asymptotic variance of o under bivariate

normality and correct allocations Z, in the sense that
NG (a“"“) - O'(t|k)> 2, N(o,T).

Define the discrepancy measure as

-1
D (o) = (5ot [1x] " (690 o). (a1
n

Under bivariate normality, Dy <Y; 0(t|k)> ~ X3. But since this asymptotic approx-
imation is not as accurate as that for Dcg (+;-), we only implement a Monte Carlo

scheme (completely analogous to that for Dcg (+;-)) to compute a Bayesian p-value

pp for Dy <Y; 0(t|k)> for each k.

6.3.2 Cross-validation Methods

obs

Let y? denote the 7" observed offspring location, y* a replication for an

[e]

arbitrary offspring (i.e., with possibly different allocation), and y(jb)S the collection

of all observed offspring locations except the ;. Gelfand, Dey, and Chang (1992)

yf’jb)s, k) to assess

the fit of the data to the model indexed by k. This density suggests which values

propose the use of the cross-validation predictive density p <y*

of y* are likely when the model is fitted using all data except y;’bs. Each observed

y;’bs can be compared to an estimate of the corresponding p < ‘y?jb)s, k) density to

determine how well it supports the model.

We use two applications of the cross-validation predictive density. First, the

obs

conditional predictive ordinate for y$" under model k can be estimated for each j



125

and each k considered. The theoretical value is defined as

Yo k). (6.15)

yf’jb)s, k) value smaller

CPOi =p(y5™

Second, a measure of how likely it is to obtain a p <y*

than CPOj; (i.e., how likely it is for a new observation y* to support the model

less than y°b®

2°° does) is defined as (using the same “d3” name as given in Gelfand,

Dey, and Chang (1992)):

ds;, = Pp (Y |ygr k) <p (¥ |yir k) (6.16)
where y* ~ p ( ‘yf’jb)s, k) (6.17)

Estimates of (6.15) and (6.16) can be used to detect observations which are
“outliers” in the sense of not being supported by the model. Also, summaries of
(6.15) and (6.16) over j can be used as a measure of overall fit of the data to the
model. We describe such applications later; first we construct the estimators.

Estimators of CPOj, and ds;, can be based on RJIMCMC output, separated
i)
where 8 is the set of all model parameters. In our BVNPCP-BHM, the definition

by k. These utilize the cross-validation likelihood, defined as “p <y;’bs

[e]

of 8 actually depends on Y, since € for Y includes z;, but 8 for y(jb)S does not.

obs
J

obs

Also, the y;’s are independent, and so y?*® does not depend on Y Hence our

unfixed parameter space necessitates a modified definition and notation for the

cross-validation likelihood, represented and computed as follows:
0)) = p(¥7" % p20)k)

= p(y”I%, p. k)

- /s
/

p(yo™

2,2, |3, p, k) dz;

7 b

(y
p (Y™ |%, 1,25 p (2, |k )dz,

J
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k

= Z (Y™ |2, p, 2, = i) P (z; = i|k)
=1
Lk

= Ezp OIDS|2 ll'vZ]_Z)

-1 Zf 55 |1, %) (6.15)
where f(-|p,;, %) denotes the den81ty of N(p,;,3). Note that (6.18) is equiva-
lent to the mixture likelihood (3.3). The estimation of CPOjj based on RIJM-
CMC requires a sample {98;’6), cees Gg)ﬂk)}, which is tempting to obtain by taking
{9(1|k), ey 0<Tk|k)} and removing z; from each. However, {9(1|k), ey 0<Tk|k)} is
a Monte Carlo sample from p(0 ‘YObs,k). The proper technique in our cross-

validation setting is to use a sample from p <0

yE’Bﬂk). Fortunately it is not
necessary to re-run the RJMCMC sampler without y;’bs; the required sample can
be obtained via weighted bootstrap resampling of the RIMCMC output (also called
sampling/importance resampling: see Rubin (1988)):

Fort =1,..., T}, compute
1

<y;)bs

w]‘t

w]‘t =

()

g(tllk)> '
Then normalize the weights to yield

wr, =

¢
’ Zt 1 wjt

Sample, with replacement, T} values from {0(1|k) ...,0<Tk|k)} with probabilities
{w]*l, e w]*Tk} to yield {0*(1|k), e 0*(Tk|k)}. Then discard z; from each to pro-
duce {0*21,;]“) . G*Er)k|k)}, a cross-validation sample from p <9 YE)BSa k)

Using the cross-validation sample 9* CPO]|k is estimated, using (6.18),

by B
o 1 & 1
CPOy, = ﬁz — , (6.19)
t=1 P <y] o (4) >
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the harmonic mean of the cross-validation likelihood values. Gelfand (1995) uses
the form (6.19), except with 08)]6) in place of 0*8)]6), since he does not implement
importance resampling (which is strange, because then the method is not really
cross-validatory). For large data sets, this is unlikely to make a difference. However,
to be on the safe side, we incorporate the importance resampling.

Estimation of d3;, requires an additional sampling step, the generation of
samples from the cross-validation predictive density p <y* yE’Bﬂk). This can be

(-[%)

accomplished using our cross-validation sample 0*(]‘) as follows.

Note that
p (¥ 04y k) = (Y yE) 06 k) (6 [y F)
= p(y*‘e(j),k)p (0(]) ‘y?;s,k). (620)

Therefore, if we can simulate (y*, 0*@) jointly from (6.20), then y* will marginally

yf’jb)s, k) We already have Q*E'j')k) from p <0

can obtain the required sample by generating y*® from p <y*

yf’jb)s, k) , SO we

G*Ezl)k), k) , using

be a sample from p <y*

(6.18):
1. Sample z from U{1,... k}.
2. Sample y*'™ from N <p;(t|k)7 E*(t|k)>‘

Then we have an estimate of d3j|k:

Ty,

-~ 1 N
RS ST

o) <p (v

where the densities p(-|) are computed via (6.18).

0*2;'{“)] , (6.21)

If the collection of c/l\3j|k for j =1,...,n1is “roughly centered around 0.5 without
many extreme values,” this indicates a good model fit (Gelfand, Dey, and Chang,
1992). If ds;, 1s small, then y;’bs does not support model k. On the other extreme,

an excess of large ds;, suggest that variation predicted by model k is not supported
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by the data.

Plots of C@WC vs. j, constructed separately for each k, can identify which

obs
J

data points y2® support or fail to support the model for each k. The sum of
log C@ﬂk can be used as a measure to compare model fits (see section 6.4). How-
ever, the irrelevance of the magnitude of C@WC to model adequacy renders it
useless for validating model assumptions in general. The statistic c/l\3j|k fills this role;
histograms or boxplots of ‘/1\31|k7 e ,c/l\:;nlk for each k can be used to assess the overall

fit of the BVNPCP-BHM conditional on each k considered, according to the criteria

discussed in the previous paragraph.

6.4 Model Comparison (Inference for k)

Inference for k, the number of clusters, is possible through a variety of tech-
niques. The aim of this thesis is not to choose a particular model (i.e., a BVN-
PCP(A, Ek,n) for a particular k). Inference for 3 will involve contributions from
all candidate models visited by the Markov chains, accounting for the uncertainty
of k& implicitly as part of RIMCMC rather than as a secondary Bayesian model
averaging-type procedure as in composite EM analysis.

However, there are a wealth of model comparison methods, few of which ap-
pear to have been applied to RIMCMC, and so we feel that an investigation of
model comparison possibilities for RIMCMUC is in order. Furthermore, it will be in-
teresting to see how well conclusions from methods which analyze output separately
for each k tally with the marginal distribution of & from the RIMCMC sampler (i.e.,

the “visit frequencies” as shown in the posterior histograms of k).
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6.4.1 RIJMCMC Model Visit Frequencies

The number of clusters, k, can actually be estimated quite directly from RJM-

CMC, using samples from the marginal posterior distribution of k:
T
1
D —— ) —
p(k|Y) = = E I(Y =k). (6.22)

t=1
The variance of each p(k|Y) can be estimated via batch sampling of the indicator

function I (k(t) = k) (an idea apparently implemented by Carlin and Chib (1995) in

their non-RJMCMC dimension-changing sampler):

LB ™ gy —ﬁ(le))zl (6.23)

V) = k|
7=1

where p;(k|Y) = mean of I(k) = k) for j*h batch
and by, m; = batch size and number of batches used.
By the Central Limit Theorem (quite appropriate here since T is in general very

large),
BEIY) 2 N (p(kY), Var (5K Y))) (6.24)

6.4.2 Use of Model Adequacy / Checking Criteria

As suggested by Gelfand, Dey, and Chang (1992), C@ﬂk and c/l\3j|k can be
used for model comparison via determination of which models appear to be more
adequate than others as an explanation for the data. Such comparisons are rather
ad-hoc and are difficult to interpret on a meaningful scale, but nevertheless useful
at least from a descriptive point of view.

Gelfand, Dey, and Chang (1992) suggest, as one possible strategy, favoring
values of k with higher > " log C@WC or higher "_ <c/l\3j|k - 0.5>2. The expo-

nentiated difference

exp (Z log CY/‘P\Oj|k1 — Zlog C%j|k2>
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may also be used as a surrogate for the Bayes factor, called the “pseudo-Bayes
factor” (see Gelfand, 1995, p. 150) in comparing candidate models k; and ky. An
alternative is to display adjacent boxplots of C@WC or c/l\3j|k for different k. favoring
k for which C@ﬂk values appear higher and c/l\3j|k values are more concentrated
around 0.5. This alternative method may be more robust to outliers than use of
a scalar summary. Still another possibility is to plot CY/‘P\Oj|k1 Vs. C%j|k2 in a

scatterplot matrix covering all pairs of &k values considered.

6.4.3 Bayes Factor Approximations

Perhaps the most popular tool for model comparison in any Bayesian frame-
work is the Bayes factor (see Kass and Raftery (1995) for a review). The Bayes
factor for comparing two models ky and k;y is defined as the ratio of marginal like-

lihoods for the two models,

_P(Y|k1)
bo= k)

Its name is suitable because Bj; is the factor by which the prior odds of &y over ks

must be multiplied to obtain the posterior odds:

plnly) ™ ] (X1

p(k2[Y) [pimk(gf)?(b)] plka) ] [P (Y [k2)
P
If the candidate models are taken to be equally likely a prior: (which they are,

in our case), then the Bayes factor completely determines the posterior odds of each
pair of candidate models, and thus the posterior distribution of k. Inference for k
then focuses on estimation of constant multiples of the marginal likelihoods, i.e.,
computation of c;m) for some constant ¢. Many varieties of such estimators are
available. We concentrate on those that are invariant to label-switching (see sec-

tion 4.4.6). A popular method due to Chib (1995) is unfortunately unavailable to

us due to the label-switching problem. Another, the Laplace-Metropolis estimator



131

(see Raftery, 1995, section 10.4.1) appears to be intractable due to the inability to
estimate posterior variance matrices involving g and/or Z (again, label-switching
being the culprit). There are possible alternatives, e.g., use of an observed infor-
mation matrix, but it is not clear how such asymptotic variance estimates should
be computed, or how accurate they would be, given that MLE’s are not produced
by RIMCMC. Further research is needed to explore the feasibility of a Laplace-
Metropolis approach for our model.

Fortunately, all other commonly used marginal likelihood estimators for MCMC
are available to us, and so we can concentrate on these. Many of these methods
involve computation of a likelihood using posterior samples. Although the “likeli-
hood” for our BVNPCP-BHM is the classification likelihood as specified by (4.2)
and (3.1), there is no reason we cannot use other likelihood forms as well. Raftery
(1995, section 10.5) supports the use of the mixture likelihood (given by (3.3)) for
model comparison using MCMC for mixtures.

In the MCMC framework, the likelihood can be treated simply as a function
L(8,Y) of the model parameters and data. The marginal likelihood estimators
we will use rely on the availability of samples of the function L(8,Y) from the
posterior distribution of 8. If L(0,Y) = p(Y |, 3, Z, k), the BVNPCP-BHM
(and classification) likelihood, posterior samples are clearly available directly from
RIJMCMC, which implements the Monte Carlo integration

/---/p(Y 0, 2,2, k)p (p, 2, Z, kY )dp dX dZ dk.
IfL(0,Y) =p(Y |p, X, k), the mixture likelihood, using posterior samples directly

from RIMCMC is analogous to performing the Monte Carlo integration

[ [ oY =k (0,32, Y )p 5 2 0
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A more direct Monte Carlo integration would be

[ [ o0 b (30 1Y g a5
but since samples of (X, g, k) from p (g, 3, Z, k |Y ) are marginally from p (p, 3,k |Y),
RJMCMC does indeed produce valid samples of the mixture likelihood p (Y |p, 2, k)
as well.

Two different varieties of marginal likelihood estimators are used. The first in-
volves penalized likelihoods, three forms of which we use: the Bayesian Information
Criterion (BIC, Schwarz (1978)), Approximate Weight of Evidence (AWE, Ban-
field and Raftery (1993)) and Akaike Information Criterion (AIC, Akaike (1973)).
These are all estimators of 2log p(Y|k) + ¢. The penalized likelihoods are typically
evaluated at the MLE, but since the MLE is unavailable in RIMCMC, either the
maximum (e.g., Raftery (1995, p. 178)) or average (e.g., Carlin and Louis (1996,
p. 231)) of the posterior likelihood samples can be used. Since our study of model
comparison procedures for RIMCMC is rather exploratory, we try both approaches.

It seems that use of the mixture likelihood is more appropriate than the clas-
sification likelihood (except for the AWE, which is specifically designed to utilize
the classification likelihood), especially since specification of the dimension of Z is
unclear. Raftery (1995, section 10.5) supports this approach in the mixture model
context, although he cautions that the BIC is not known to be valid for mixture mod-
els. However, Fraley and Raftery (1998) cite examples (mentioned in section 3.5.1
of this thesis) supporting the use of the BIC for mixture models.

The penalties employed by the estimators include a specification of the num-
ber of scalar parameters, which for the mixture likelihood is 2k + 3 (two scalar

coordinates for each p,, plus 011, 022 and o13). The two forms of BIC computed



133

from RJIMCMC output are

BIC™ = 2maxlogp <Y ‘”<t|k>7 2(t|k)> — (2k + 3)log n (6.25)

and
Bjcmean — 2_ Z 1ng <Y ‘y] t|k) (t|k)> — (Qk + 3) 10g n. (626)

The two forms of AIC are

ALCP™ = 2maxlog p <Y ‘,,,(twc)? g(tlk)) — 22k +3) (6.27)

and

Ty,

Ajcmean — 2_ Z 1ng <Y ‘y’ t|k (t|k)> — 2(2k ‘|‘ 3) (628)

Finally, the two forms of AWE are
AW E™ = QmELX log p <Y ‘p,(“k), (k) Z(t|k)> - <2k +3+ 3) logn  (6.29)
and
1 & 3
AWEP= =2 logp <Y ‘,N'k), » (k). z<t|k>> <2k 134 ) logn. (6.30)
Tk t=1
Because we assume equal prior model probabilities (equal p(k)), posterior
model probability estimates for a set of candidate models {kmin, - - - , kmax } can con-

structed via:

exp (31210g p (Y T) + o]

i exp (3210ep (Yg) + )
where {[2 log pTY\|k) + c]} is any of { BIC™}, { BIC*} {AICP™}, {AIC Y,

plk|Y) = (6.31)

{AW Epax} or { AW Eean ). This follows because, assuming {Emin, - - - » Kmax } COVers

the set of feasible models,
plly) = HEOHE
p (Y |k)p(k)
it P (Y l)p(a)
exp (3 [2logp (Y [k) 4 ])
>t exp (5 2log p(Y[q) +¢])
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The second type of marginal likelihood estimator used is the importance sam-

pling estimator based on the mixture likelihood, which has general form
T, () 0k (Y |ulelh) 260 )
t=1 pH (R, SR |k )
7, (e =) ’
t=1 p*(u(t|k)72(t|k)|k)
where p*(+) is an importance sampling density (Newton and Raftery, 1994). If p*(+)

PYIR) = (6.32)

is chosen to be equal to the posterior p <Y ‘p, tk) E(t|k)>, then (6.32) simplifies to

(using the name given by Newton and Raftery (1994))
Ty,

-1

1 1
: (6.33)

i & (¥ [, 50

the harmonic mean of the sample of mixture likelihood values, which converges

pa(Y[k) =

almost surely to the correct value but does not, in general, satisfy a Gaussian
central limit theorem (Raftery, 1995, p. 169).
A more robust version of (6.32) is constructed using for p*(-) a mixture of

prior and posterior densities,

7 <”(t|k 3 (tlk) |k> _5p< t|k 3 (tlk) |k> (1_5)p< t|k $(tlk) Y, k)
where 0 < & < 1, preferably small. To avoid the necessity of simulating from the

prior, Newton and Raftery (1994) suggest using all T} values from the posterior

sample and “imagining that a further [%] values of [u,X] are drawn from the

prior, all with likelihoods [p (Y |, 3, k)] equal to their expected value [p (Y |k)],”

leading to
(Y|H tIr) w(tlk) ) s
Et L 854 (Y |k)+ p(Y| (¢1r) x(tlk) ) + (_5) Tk
5

) (

(¥ =y T v
which can be solved iteratively. The “expected value of p(Y |

pa(Y|k) = : (6.34)

7
k)

, X, k) means its

Et 1 5p4 Y|k (

expectation under the prior distribution of g and ¥ given k.,

[ [pX ez mpu s = [ [ u S duas
— p(Y k).
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We use 6 = 0.1 and encounter no convergence problems; the solution to (6.34) is
obtained in every case within a handful of iterations. Unlike py(Y |k), pa(Y k) does
satisfy a Gaussian central limit theorem, in addition to being strongly consistent
(Raftery, 1995).

Both py(Y|k) and ps(Y|k) can produce posterior model probability estimates

for {kmins - - -, Kmax }, assuming equal priors, via
pi(Y[k)
kmax o
D gt Pi(Y9)

PIY) = (6.35)

for 1 = 2 or 4.

6.5 Estimation of ¥ and Isotropy Testing

Two very different approaches to performing inference on the cluster shape/scale
parameter 3 using RIMCMC output are implemented: highest posterior density in-
terval (HPDI) calculation and batch sampling-based variance estimation. For both
approaches we use posterior samples 0) across all k, thus implicitly accounting for
uncertainty in the number of clusters. We also work with normalized versions of the

“regular” and “anisotropy” parameterizations of ¥, as discussed in Definitions 1.1.9

and 1.1.10 and section 3.5.2.

6.5.1 HPD Intervals and Tests

For this section we define the notation (7) to denote the 7% order statistic of a
sample ) = {8V (1)} of either a linear or circular parameter. A 100(1 —a)%
HPD interval for a linear parameter 8 of a model analyzed via MCMC is defined
as the shortest interval containing at least 100(1 — «)% of the posterior samples,

which is given for a unimodal sample as:

[0(t"). 0 (t"+ |(1 — )T —€])] (6.36)
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where t* is such that
O+ =0T =) =0 = | min {80+ (- )T )~ (1)}
and “|-]” denotes “greatest integer less than or equal to” and € > 0 is on the
order of machine precision. There are analogous definitions for multimodal samples,
but they are not needed in our case because all of our posterior samples turn out
to be unimodal. Chen and Shao (1998) prove that the coverage probability of
(6.36) converges almost surely to the correct value. The HPD interval is considered
superior to the commonly used equal-tail Bayesian credible interval, especially if
the posterior sample is not symmetric (Chen and Shao, 1998). It can be used to
construct confidence intervals for log 011, log o2, 2(p12), log v, log ¥ and log oy —
log 095. Note in particular that an HPD interval for log v cannot possibly contain 0,
the null value for isotropy. A valid isotropy test can be conducted, however, using
two HPD intervals for
o = (log oy — log oaa, z(p12))

and a Bonferroni correction. As discussed in section 3.5.2, a test of Hy: ¢ =0 vs.
H;: o°# 0 is a test of isotropy for the BVNPCP. We compute the two achieved

significance levels

ASLyaupir = 1 — (confidence level of largest HPD interval for log 11 — log 022

which excludes 0)
and

ASLcoy = 1— (confidence level of largest HPD interval for z(p12)

which excludes 0)
and then compute the Bonferroni-corrected p-value of the isotropy test as
p= min {1, 2min (ASLVarDiff7 ASLCOV)} . (637)

The standard formula (6.36) for HPD intervals does not apply for circular
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parameters (e.g., ¢). To the author’s knowledge, no methods have been previously
proposed to obtain HPD intervals for circular parameters. It seems perfectly rea-
sonable, however, to define a new interval length measure appropriate for a circular
parameter € [a,b) and construct a HPD interval in the same fashion, except
allowing the interval the possibility of wrapping around b and resuming at a.
Define the distance measure “S”7 as
n(z) = n(J), ifi>]

(n(i) —a) +(b—=n()), i<y

(i) ©n(7) =

and interval notation “®” as

i),n(7)), ifi> ]
n(D) © (i) = (n(2),m(s)) > (6.38)
(a,n(D) U (n(5),0), ifi<j.

Also define the operator “©” as

. Js ity <T
JoT =
Jj (modT), ifj>T,

which is equivalent to the “mod” operator except that 7 © 7 = j.
Then a 100(1 — o)% HPD interval for n is
() © (" +[1-a)T —€))OT) (6.39)
where t* is such that
(T +[1-—a)T =€) 0T) & n(t7)
= min {n((t+[A-a)T—€e)OT) & nt)}.
A 100(1 — a)% HPD interval can be constructed for ¢ using {qb(l), ey qb(T)}

with ¢« = —% and b = 7. Caution is advised, however, since there are no established

results regarding the asymptotic coverage probability.
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6.5.2 Batch Sampling-Based Confidence Regions and
Tests

Another approach to estimating a vector or scalar component of ¥ is to as-
sume approximate normality of the posterior sample of the component and estimate
its variance via batch sampling. We caution from the outset that approximate nor-
mality has not been rigorously assessed for posterior samples of ¢, log 011, log 799,
z(p12), log v or log ¥, but we implement the batch sampling approach mostly for
investigative purposes. Since we perform analyses on several simulated data sets
whose true underlying model parameters are known, we can carry out a (albeit
small-scale) study of its performance. We use the normalized parameterizations
of X to make the approximate normality assumption more reasonable. Most of
the nonparametric posterior density estimates calculated for scalar parameters in
our analyses (the primary exception being log v, which is skewed right for isotropic
models) seem to resemble normal curves, at least suggesting our investigation is
worthwhile.

For a scalar linear parameter 6 (e.g., log o1, log oaz, 2(p12), logy or log ¥),
the posterior variance can be estimated via batch sampling (see section 6.2.2). A
(very, perhaps) approximate 100(1 — o)% confidence interval for 6 is then

80 £ z1_ay/Varps(6). (6.40)

A two-dimensional approximate 100(1 — )% confidence region for ¢ can be
constructed using a multivariate batch sampling variance estimate:

[00) [Vates ()] [60] < 231 ). (6.41)
The deviation of this elliptical region from the null value 0 suggests the nature

and extent of anisotropy. The p-value for an isotropy test of Hy : ¢ = 0 vs.
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Hy: o°# 0 is given by
P (x > [60] [Varas ()] [ac«q) . where X ~ % (6.42)
Finally, a nonparametric (not assuming approximate normality, but neverthe-
less quite approximate) 100(1 — )% confidence interval can be obtained for ¢, using
the special version of batch sampling for circular dispersion (see section 6.2.2). First
#1) is converted to ¢*() via (6.7). Then the sample circular mean and batch sam-
pling circular dispersion estimate of ¢*{) are used to produce the confidence interval

(using the “©” notation defined in (6.38)):

([gb*(') — arcsin <Z% m)] (mod 27r)> (6.43)
© ([qé*(') + arcsin <Z%N/XBS (¢*<~>)>] (mod 2@) :

Then the endpoints (¢, and ¢f;, say) are back-transformed via (6.8) to give a 100(1—
)% confidence interval ¢, ©® ¢; for ¢. Recall that this confidence interval is ill-
defined if zg ZS\BS (¢*0)) > 1, in which case we report that at least ¢*() & o

back-transformed appropriately, is covered.

6.5.3 Comments on the Two Approaches

The HPD interval approach makes no assumptions about the form of the poste-
rior distribution and is more theoretically sound, and hence our preferred approach.
A drawback of this method is its inability to directly construct multi-dimensional
confidence regions (although componentwise confidence intervals can certainly be
combined to yield cube-shaped regions, but these may be unnecessarily large and
lead to overly conservative multi-dimensional tests).

The batch sampling approach was included primarily for this reason, as it
can produce multi-dimensional ellipsoidal confidence regions and tests incorporat-

ing covariances in posterior samples. However, the distributional approximations
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required are certainly suspect. Furthermore, there appears to be a serious problem
with over-estimation of variance in batch sampling for RIMCMC (see Chapter 7
for examples). We have not determined the exact cause, but we have observed
strong negative correlations between batch means, likely the result of different %’s

dominating different batches. This is a good topic for future research.
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CHAPTER 7

IMPLEMENTATION AND RESULTS OF ANALYSES, WITH
COMPARISONS OF METHODS

7.1 Implementation of RIMCMC Algorithm

For the Redwood data and each of the 12 simulated patterns, 3 chains of the
RJMCMC sampler for the BVNPCP-BHM(A,n) (see Definition 4.2.1 and Algo-
rithm 4.4.6) were run for 200,000 sweeps apiece. Some information was recorded
using all sweeps (see section 7.2), but due to limitations on storage space, only every
10" sweep was saved. Originally, only 100,000 sweeps were run (also saving every
10" sweep), and this was found to be insufficient for batch sampling (the ACF
cutoff of 0.05 could not be achieved for some methods). Due to the high degree of
autocorrelation, we feel that simulation of longer chains, discarding some sweeps, is
preferable to simulation of shorter chains, saving all sweeps.

Hyperparameter values are displayed in Table 7.1. Values for V (specified
in terms of %V‘l, the inverse of the prior mean of X7') all represent isotropic
processes; they are chosen to be consistent with the cluster size implied by the true
¥ model values for the simulated patterns, and according to casual visual inspection
for the Redwood data. As discussed in section 4.4.2, setting m = 2 makes the prior
for 3 as uninformative as possible. We expect the prior to have very little impact
on the behavior of the algorithm. Rigorous sensitivity analysis would require a large
number of simulations and is saved for future research.

Starting values used for k and ¥ are shown in Tables 7.2 and 7.3. For chain 1,
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Pattern(s) ko ki m (V7Y GV, GV,
Redwood 1 30 2 00025  0.0025 0
Ik7« 1 30 2  0.003 0.003 0
Ikl4+ 1 30 2 00015  0.0015 0

Table 7.1: Hyperparameter values used for prior specifications

in RIMCMC.

pq 1s initially located at the center of the region. For chains 2 and 3, starting values
are set to a random sample (selected without replacement) of offspring locations.
Instead of selecting initial values for Z, we implement My (then M, and Msy) before

starting step 3 of Algorithm 4.4.6.

Chain k 011 099 J12

1 1 0.1 0.1 0
2 15 0.003 0.003 0

3 30 0.001 0.001 O

Table 7.2: Starting values for k
and X used in RIMCMC, Red-

wood data.

The starting values were chosen to be over-dispersed, as required by our con-
vergence assessment technique. An upper limit of k,; = 30 seems reasonable for
all of the patterns. The result of the analysis performed by Diggle (1983) (see

section 1.3.1 and Figure 1.1) on a similar Redwood pattern, however, implies the
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Chain k 011 099 J12

1 1 0.1 0.1 0
2 15 0.002 0.002 0
3 30 0.001 0.001 O

Table 7.3: Starting values for k
and ¥ used in RIMCMC, sim-

ulated patterns.

presence of approximately 67 clusters in our Redwood data set. Once this was real-
ized, we ran a chain with ky; = 100 and a starting k of 90. The value of k fell below
10 within 2,000 sweeps and remained below 20 for the remainder of the 200,000
sweeps.

The source code for the RIMCMC sampler was written in C++ using matrix
and random number libraries authored by Davies (1997) and compiled with the
HP-UX CC compiler, version A.10.36, to generate ANSI style code. Simulations
were run on a Hewlett Packard workstation model B132L running HP-UX version
10.20, which has a 132 MHz PA-7300CL CPU and 128 Mb RAM. Simulation run
times (for each chain) range from 12.2 to 21.46 hours with a mean of 16.2 hours.

(Some longer run times resulted from shared usage of computers).

7.2 RJMCMC Algorithm Performance and
Convergence Assessment

Table B.1 shows acceptance rates for dimension-changing moves, calculated
for each data set from all 600,000 sweeps from the 3 chains. Acceptance rates for
split/combine range from 0.008 to 0.0522, while those for birth/death are consid-

erably lower, ranging from 0.002 to 0.016. Richardson and Green (1997) report
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acceptance rates between 0.04 and 0.18 in their one-dimensional normal mixture
RIJMCMC sampler. It seems that higher acceptance rates would certainly be desir-
able; however, there are currently no established standards for dimension-changing
MCMC samplers.

Table B.2 displays occurrence rates for move-disqualifying conditions (also
using all 600,000 sweeps for each data set). We define a “move-disqualifying con-
dition” as a situation which immediately sets the acceptance probability to 0. The

three types of such occurrences in our sampler are:

1. a NNy violation in the split move, resulting from an attempt to generate 2
new cluster centers, neither of which is the other’s X-Nearest-Neighbor (see

Definition 4.4.1),
2. a split or birth attempt when k = ky;, and
3. a combine or death attempt when k& = k.

Since we use ki, = 1, the third type is uninteresting. The occurrence of N Ny
violations (on average, in 12% of split attempts) does not seem excessive. In very
few cases (and, always at the very beginning of each chain, and only for chains
starting at & = ky;) was a split or birth move attempted at k = ky;, suggesting
that our choice of ky; is reasonable. (Note: these occurrences do not imply that
the move would have been accepted if ky; were higher; the acceptance probability
in such cases is set to 0 before any other components are calculated).

We observed trace plots for each RJIMCMC simulation (not shown, except
for chain 2 for the Redwood pattern in Figures D.1 — D.2) to make sure that no
anomalies occurred. In all cases, the value of k settled to its eventual neighborhood

within several hundred sweeps.
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The convergence assessment method of Algorithm 5.4.1 was applied to the
saved sweeps (20,000 per chain) in each pattern, for the parameters discussed in
section 5.1, with a base batch size b = 500 (yielding 20 total batches). Henceforth
a “sweep” will refer to a saved state (for example, “sweep 100” corresponds to the
1000*" sweep of the original chain). Relevant plots are shown in Figures E.1 —
E.13. Convergence appears to be attained remarkably quickly in each case. In
the numerator-and-denominator trace plots (right-hand side of each page), the two
lines in each pair are practically indistinguishable and stabilize (with the possible
exception of Figures E.4(b) and E.13(b)) to a common value by the 15" batch
(most far sooner). MPSRF’s are never higher than 1.2 (even for the first batch,
which analyzes sweeps 500-1000), and they stay below 1.01 past the 15®® batch in
each case.

Although we could justify a diagnosis of convergence at the 15" batch (or
even sooner), we conservatively chose the 20" batch and declared the last 10,000
sweeps of each chain suitable for inference. Thus, in terms of section 6.1, we have
C =3, Ty = 10,000 and T = 30, 000.

Programs for convergence assessment were written in S-Plus and implemented
in S-Plus version 4.5 for Windows. The run time for each data set was only a few

minutes.

7.3 BVNPCP-BHM Model Adequacy Assess-
ment

The methods discussed in section 6.3 were applied to all 13 data sets to as-
certain whether model assumptions are supported by the data. For each pattern,
only values of k occurring at a frequency of at least 0.001 (i.e., at least 30 times)

are considered. Since all simulated patterns were generated from only one kind of
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model, the BVNPCP-BHM, it is difficult to assess the performance of these meth-
ods. The most informative evaluation is obtained by observing results for correct
vs. incorrect values of k for a given data set. A study of the behavior of the methods
for patterns which deviate from model assumptions would clearly be useful, and is
encouraged in future research.

Chi-square plots for each pattern and k (not displayed) constructed at the
mode show no signs of trouble, except for occasional outliers for some values of k
(which do not correspond consistently to correct vs. incorrect k). Figures H.1 — H.2
display p-values for the 3 discrepancy measures used. P-values from Dcr <Y°bs; 5(%)) ,
analyzed at each mode only, fluctuate wildly and have no discernible relationship
to k, thus casting doubt on its effectiveness. Those from Dcgr <Y°bs; 0(t|k)> (with
Monte Carlo simulation) are much more stable, indicating trouble in simulated pat-
terns only for & = 7 — 9 for AI-3-k7-b (which is strange, since these are equal or
close to the actual k values). For the Redwood pattern, p-values are very high for
low k, implying that for these k, clusters are much smaller than expected under the
model. Finally, p-values for Dx <Y°bs; 0(t|k)> are extremely stable, rarely deviating
far from 0.5. We realize that this discrepancy measure is probably a poor choice:
although it is based on proper intentions of evaluating the conformity of posterior 3
samples to the data, the computation of the 3 estimate used in Dy, <Y°bs; 0(t|k)> is
similar to the generation of 3 from its full conditional distribution in the RIMCMC
sampler (the primary difference being use of p values vs. sample cluster means),
and thus is bound to be well-behaved regardless of model appropriateness.

Box plots of C@WC (see section 6.3.2) values are shown in Figures H.3 —
H.4. For each pattern, distribution of C@WC varies mostly in the upper tail and

consistently shows higher values for higher k.
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The c/l\3j|k statistic is more useful than C@WC for determining model ade-
quacy. Box plots of c/l\3j|k for different k are shown in Figures H.7 — H.8. Histograms
(shown in Figure H.9 for the Redwood data) provide a more thorough assessment.
For the Redwood pattern, histograms for each k show a mode of c/l\3j|k around 0.7
and an excess of very low values, implying an excess of offspring very close to clus-
ter centers and an excess of isolated offspring with distant parent cluster centers,
respectively. This is consistent with a leptokurtic distribution (see section 1.1.5),
which is commonly observed in pollen and seed dispersal. Box plots and histograms
of c/l\3j|k for the simulated patterns look reasonable in most cases (and very similar
across k for each pattern), except for AI-3-k14-b, which exhibits behavior similar
to the Redwood pattern.

Programs to compute C@WC and c/l\3j|k were written in C++ and imple-
mented similarly to those for the RIMCMC algorithm. Graphical displays are
achieved with S-Plus programs. The computations of C/Z\3j|k7 Dcr <Y°bs; 0(t|k)> and
Dy, <Y°bs; 0(t|k)> are computer intensive due to a large amount of required Monte
Carlo simulation, but can be performed simultaneously. Run times were not recorded,

but seemed to average about 6 hours per data set.

7.4 Inference for k: RIMCMC and Composite
EM

For the purpose of model comparison (in our case, equivalent to inference
for k), the same k are used as in section 7.3. As mentioned in section 6.4.2, model
adequacy criteria can also be used for comparing models. The discrepancy measures
(Figures H.1 — H.2) do not seem to favor any values of k over others, except for

the Redwood pattern, where smaller k correspond to a worse fit (reflecting tighter
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clustering than expected under model assumptions). The box plots for C%j|k7 and
especially plots of 2?21 log C@ﬂk (Figures H.5 — H.6), favor higher k& for most
patterns. We suspect that 2?21 log C@WC may be too sensitive to extremely low
C@WC values, which do occur in our analyses. Wherever box plots or histograms
of c/l\3j|k indicate questionable model fits, they generally do so for all £ and thus do
not appear to be effective for model comparison.

The posterior density estimates of k& from RIMCMC are shown as histograms
in Figures F.1 — F.2, and as interval estimates of model probabilities (95% confidence
interval for each k: see section 6.4.1) in Figures G.1 — G.6. Table M.1 (far right
column) shows, for each data set, the minimum number of batches used (minimum
over k) in computing the variance estimates.

Estimated model probabilities from composite EM (see section 3.5.1) are
shown in Figures G.1 — G.2. For each pattern, we computed p(k|Y) from the
composite EM estimate for all (kmin — 4, ..., kmax + 4), where (Emin, - - -, kmax) are k
visited by RIMCMC with frequency > 0.001. (Note: k& = 1 was not used). Then
we continued to try more values of k until the estimated probabilities for the lowest
four (unless & = 2 had been included) and highest four values were negligible. For
two patterns, the Redwoods and AI-3-k14-b, values of k higher than those visited
by RIMCMC were given non-negligible probabilities. To be on the safe side, we
calculated BICFM for k = 2,...,80 for each of these patterns and observed that no
additional values of k& were supported.

Figures G.3 — G.6 show estimated model probabilities computed from various
marginal likelihood estimates using RIMCMC output (see section 6.4.3). The label
“RHarmMn” refers to ps(Y|k), while “HarmMean” refers to pa(Y k).

Note that for some patterns (e.g., AI-1.5-k7-b and AI-3-k7-a), there is one
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clearly dominant k&, but for others, there is more variability.

In general, {p(k|Y)} from RIMCMC visit frequencies (VF) seems to agree
most closely with those from BIC, second most with BIC*" (which tends
to favor slightly lower k), somewhat with AW EP** and AICP**™™ (which favor
moderatly higher k), very little with BICFM, AW EM#* and AIC™* (which favor
much higher k), and least of all with py(Y|k) and ps(Y|k) (which almost always
favor the highest k’s). The RIMCMC visit frequencies almost always place highest
estimated model probabilities on k below the true value in simulated patterns, and
most other methods do this most of the time. A probable explanation for this is that
methods can be easily “fooled” into treating overlapping clusters as single clusters,
but there is nothing to encourage overestimation of k.

As would be expected, model probability estimates using likelihood averages
favor lower k’s than corresponding versions using likelihood mazimums, since the
penalty carries more weight in the presence of smaller likelihoods. Since AIC has a
lower penalty than BIC, it makes sense that it would prefer higher k.

Estimated model probabilities from composite EM are remarkably similar to
those from AIC"*, and also quite similar to those from AW E;***. We suspect that

this is due to the combination of 2 opposite forces:

1. composite EM uses a true (local, at least) maximum likelihood estimate, while
AICP* and AW E*® only use estimates from the largest sample likelihoods

observed in RIMCMC output, and

2. BIC enforces a larger penalty than AIC, and seemingly AWE also. We an-

ticipate that model probability estimates from composite EM would agree
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more with BIC™* as the number of sweeps in the RIMCMC sampler ap-
proaches oo, since higher and higher sample mixture likelihood values will be

encountered, perhaps occasionally approaching the MLE.

The importance sampling marginal likelihood estimates (p2(Y |k) and ps(Y|k))
appear to suffer the same fate as 2?21 log C{P\Oﬂk, being sensitive to extremely low
values going into the harmonic mean (or, in the case of ps(Y|k), a slightly robust-
ified harmonic mean). A handful of extremely small mixture likelihood values tend
to occur in most models (as ascertained by observing computed values from several
data sets), producing significant impacts on the harmonic means. We suspect that
this is the cause of higher £’s being consistently favored by these methods: for higher
k, cluster centers are more numerous and thus more likely to be able to accommodate
isolated offspring, preventing them from contributing extremely small values to the
mixture likelihood.

Overall, the different methods considered to estimate the number of clusters
exhibit quite different behavior. A similar conclusion is reached by Raftery (1995,
section 10.5), who compares the Laplace-Metropolis estimator, px(Y|k), another
importance sampling marginal likelihood estimator using a specially constructed
importance density, BIC and AWE for a one-dimensional normal mixture. He states
that the “Laplace-Metropolis estimator is the only one that seems to be in the right
ballpark.” Most striking perhaps is the fact that composite EM places high proba-
bility on values of k that are not supported at all in RIMCMC, for the Redwoods
and AI-3-k14-b. For both patterns, the Markov chain started at & = 30 certainly
has a chance to explore the same possibilities, but quickly moves to lower k values.
RIJMCMC samplers consistently spend most of their time visiting k below its true

value in the 12 simulated patterns, leading to suspicion that perhaps RIMCMC for
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the BVNPCP-BHM systematically underestimates & in general.

It seems that, surprisingly, the behavior of these various model-comparison
methods is not very predictable from visual assessment of how many clusters there
appear to be, or how well-separated they are.

All marginal likelihood estimators from RIMCMC (p2(Y |k), pa(Y |k), BIC™™,
BICpear AW Eprax, AW Epean ATCP®, AIC™ ) are computed in C++ programs,
and corresponding model probabilities are computed and displayed in S-Plus. Com-
posite EM estimates for each k, and corresponding BICE™, are obtained from
MCLUST/EMCLUST (Fraley, 1998), a suite of S-Plus and Fortran routines for EM
analysis of mixture models. Estimated model probabilities from composite EM are
computed and displayed in S-Plus. Run times are very short (several seconds) for

these methods.

7.5 Inference for X: RJIMCMC and Composite
EM

Estimates of various components and parameterizations for 3 can be con-
structed both from RIMCMC output (section 6.5) and composite EM estimates
(section 3.5.2), and also used for tests of isotropy. Output from all post-convergent
sweeps 1s used in RJIMCMC methods. Information on batch sizes used in RIMCMC
batch sampling methods is displayed in Table M.1. Figures I.1 — 1.2 show 90%, 95%
and 99% confidence regions for o° (see (3.32)) using batch sampling (“BS”) and
composite EM methods, and pairs of 95% HPD intervals for the two scalar compo-
nents of o¢ (with a joint 90% confidence level). Also shown are associated p-values
of isotropy tests. The point of isotropy (¢ = 0) is indicated in each plot, and the

true value is indicated in the plot for each simulated data set. Figures J.1 — J.12
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display posterior density estimates from RIMCMC (see section 6.2.4) and 95% con-
fidence intervals from batch sampling and composite EM methods, for the scalar
parameterizations log 011, log 022, 2(p12), log v, log ¥ and ¢ (see section 3.5.2). The
true model values are shown for each simulated pattern.

We emphasize that for RIMCMC, the most informative and theoretically
sound output analysis methods are posterior density estimation and HPD intervals.
Normal approximations used to construct confidence intervals and test statistics for
both batch sampling methods and composite EM analysis are certainly questionable.
However, posterior means from RJMCMC and point estimates from composite EM
(easily located on plots as the centers of confidence regions and intervals) are still
valid, as are variance estimates in composite EM.

One could argue that a presentation of RIMCMC posterior density estimates,
HPD intervals and corresponding isotropy p-values, and composite EM estimates
and associated variances would constitute a sufficient summary of results for anal-
ysis of 3. However, since we have a collection of simulated data sets with known
model values, we proceed to implement and discuss inferential results using the dis-
tributional approximations. Although a set of only 12 simulated patterns is nowhere
near enough for a proper performance study, we can at least get a general idea of
the behavior of the methods considered.

In confidence intervals for ¢, those from batch sampling which are ill-defined
are represented with ellipsis (---) markings (see section 6.2.3). For I-kl14-b, the
composite EM interval for ¢ covers the entire range and is not shown.

We are hesitant to trust confidence regions and test results from composite
EM for the Redwoods and AI-3-k14-b since highly separated values of k contribute

to the estimates, casting serious doubt on the validity of the normal approximation



133

(see section 3.5.1). However, for lack of a better alternative, and in the interest of
comparing the performance of composite EM to that of other methods, we proceed
as usual for these data sets.

The confidence regions and intervals from composite EM and HPD agree fairly
well in most cases, and those from batch sampling are occasionally similar but usu-
ally much wider. Isotropy / anisotropy is diagnosed correctly by all methods for
all simulated patterns, except batch sampling for AI-1.5-k7-a and AI-1.5-k14-b, in
which ridiculously large confidence regions are produced. As mentioned in sec-
tion 6.5.3, batch sampling appears to frequently over-estimate variances. Unreason-
ably large batch sampling variance estimates tend to occur most in patterns whose
RJMCMC samplers produced high ACF’s (investigated for each pattern and showed
for the Redwoods in Figure D.4) and high variability in & (these two phenomena
typically occurring together).

For the Redwood pattern, the isotropy test is strongly rejected by batch sam-
pling (p = 0.000291) and HPD intervals (p = 0) but borderline for composite EM
(p = 0.0572). This represents a notable exception to the trend of HPD intervals
and composite EM regions being similar; the variance estimates in composite EM
are much larger due to strong contributions from very different %’s.

True values for o¢ are contained in 90% confidence regions in all cases except:
1. for batch sampling: AI-1.5-k7-b

2. for composite EM: AI-1.5-k7-a (99% CR contains true o¢), AI-1.5-k7-b, and
AI-3-k7-a (95% CR contains true o°)

3. for joint HPD intervals: AI-1.5-k7-a (although very close), AI-1.5-k7-b, Al-
1.5-k14-b, AI-3-k7-a (very close), and AI-3-k14-a.
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(Note: only 95% HPD intervals were computed; so, information for other confidence
levels for the HPD method is not shown).

Table 7.4 shows the number of times true values were included in scalar con-
fidence intervals. There is no “true value” for ¢ in isotropic patterns. The 4 in-
stances of the failure of HPD intervals to include the true value of log~ occur in
the 4 isotropic patterns: it is of course not possible for a HPD interval for log v to

contain 0.

Parameter Batch Sampling Composite EM HPD Interval
log 011 11 8 6
log 022 12 9 11
z(p12) 11 10 11
log ~ 12 11 8
log ¥ 11 9 7
0] 7 (of 8) 6 (of 8) 4 (of 8)

Table 7.4: Coverage of true value achieved by 95% confidence
intervals for simulated patterns. Entry is number out of 12 (or
8, in the case of ¢) patterns in which true value is contained.

The batch sampling intervals almost always include the truth but are unnec-
essarily large. Intervals from composite EM are consistently lower for “size” param-
eters (logoi1,log oa2,log ¥) and log~ than corresponding HPD intervals. This is

probably due to the fact that composite EM favors higher k’s than RIMCMC, and

thus smaller clusters (presumably with more variable shape as well). Composite
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EM intervals are usually bigger than corresponding HPD intervals for
log o11,10g ¥, and (¢ for “k14” patterns)

and smaller for
log 092, z(p12), and (¢ for “k7” patterns).

For the Redwood data, confidence intervals from composite EM are huge com-
pared to HPD intervals, and often larger than those from batch sampling, likely due
to strong contributions from a wide range of k (7-9,15,20-24) compared to RIMCMC
(7-14).

A brief overall assessment of point estimates 3 of ¥ from RIMCMC posterior
means and composite EM analysis is provided in Figures K.1 — K.2, which display
bivariate normal contours of the offspring dispersal distribution (drawn to scale with
the boundary) characterized by each 3 and by each true X (for simulated patterns).
It is apparent from these plots that RIMCMC consistently produces larger cluster
size estimates than composite EM. Despite the tendency of RIMCMC to favor low
values of k, its cluster shape/scale point estimates appear quite reasonable (very
close to the truth for 6 simulated patterns, larger size for 5, and smaller size for
1). The composite EM estimates look even better (except for Al-3-k14-b, in which
BICEM is mysteriously fond of k = 21).

Analogous plots constructed separately for k = 7,10,12 and 15 are shown in
Figure K.3 for the Redwood data. The relationship between k and estimated cluster
size is quite apparent. Posterior density estimates for various scalar components of
Y., computed separately for each of these k and overlaid with the all-k estimates,
are displayed in Figure L.1.

Source code was written in C++ for all batch sampling and HPD interval

calculations. A suite of S-Plus functions for circular data analysis (Davies, 1996) is
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used to compute and display circular density estimates. Composite EM parameter
estimates and variances are computed in S-plus programs written to operate on
output from MCLUST/EMCLUST (Fraley, 1998). S-Plus programs were written
to compute all other intervals and tests and to display all graphs. Run times are
longest for computation of composite EM variance estimates (several hours if & > 20
are included), but would be drastically decreased by conversion to C4++. All other

run times are reasonable (seconds or minutes).
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CHAPTER 8
CONCLUSION

8.1 Summary of New Methods

The composite EM and RJIMCMC approaches are, to the author’s knowledge,
the first fully developed methods for inference for model parameters of any spatial
cluster process and/or anisotropic point process.

The aim of the EM algorithm applied to mixture models is usually to estimate
the number of components and cluster centers. Our approach is somewhat the
opposite in that we treat these as nuisance parameters and focus on estimation
of the common “cluster shape/scale parameter” 3 (although we still have several
methods to assess the number of clusters). Composite EM (Chapter 3) is apparently

the first method in the field of mixture analysis to:

1. combine estimates of 3 for different numbers of components into a composite

estimate & = (611, 022, 012),

2. compute asymptotic variance estimates directly from the observed information
matrix (for p and 3) without relying on approximations to the form of the

observed information matrix, or

3. develop an overall estimate of the variance-covariance matrix of the & ac-

counting for uncertainty in k.

Even if the normal approximation to the distribution of & is inappropriate, point

estimates and variance estimates are still reasonable.
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The RIMCMC algorithm developed for the BVNPCP-BHM( A, n) (Chapter 4)
is the first RIMCMC algorithm capable of modeling mixtures of more than one
dimension (ours being two-dimensional).

The convergence assessment technique developed in Chapter 5 is the first con-
vergence assessment method with a solid theoretical foundation for RIMCMC, and
the first multivariate technique (i.e., capable of analyzing convergence of param-
eter vectors) for any dimension-changing MCMC sampler. It is applicable to any
RIJMCMC sampler with a parameter which retains the same meaning across models.

In RIMCMC output analysis (Chapter 6), we develop (to the author’s knowl-
edge) the first usage of batch sampling or HPD intervals to estimate a circular
parameter from any MCMC method. It is perhaps also the first established method
to estimate circular parameters from a MCMC sampler without treating them as

linear.

8.2 Scope for Future Research

Perhaps the most appropriate next step would be to simulate a much larger
number of point patterns to enable a more thorough study of the performance of
methods developed in this thesis. The large number of sweeps used in RJIMCMC
in this thesis was necessitated only by batch sampling; a much smaller number of
sweeps would suffice for all other methods. Inclusion of patterns which deviate in
different ways from model assumptions would help to determine the robustness of
the methods. A study of the effect of smaller or larger samples sizes (total number
of offspring) would also add significantly to understanding of their behavior and
success.

In the composite EM technique, the regularity conditions guaranteeing the
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correct asymptotic distribution of & from the EM algorithm should be checked.
We suspect that they hold (e.g., third-order partial derivatives are known to sat-
isty the appropriate criteria for multivariate normal distributions, a result which is
likely to extend to mixtures of multivariate normals). A study of the appropriate-
ness (or lack thereof) of the normal approximation to the asymptotic distribution
of the composite EM estimate & is also clearly in order. Although the agglomer-
ative clustering method is considered to generate good starting values for the EM
algorithm, it would be prudent to try a battery of different starting values to check
whether a larger local maximum can be obtained. Assessment of the accuracy of
BICEM in estimating model probabilities is another priority. Several alternative
EM-type algorithms (e.g. classification EM and stochastic EM) exist and could be
used to develop similar composite methods combining information from separate
analyses by k (Celeux, Chauveau, and Diebolt, 1996; Diebolt and Ip, 1995; Celeux
and Govaert, 1995).

For the RIMCMC algorithm, incorporation of some kind of label estimation
method or ordering restriction would allow a greater variety of output analysis
options. The RIMCMC sampler should be compared with fixed-k MCMC samplers
to see if it provides a beneficial “tunneling” effect (i.e., ability to move between
distant high-probability regions of the parameter space that are separated by valleys
of low density, via dimension-changing jumps). Richardson and Green (1997, p.
751) report that in previous work in mixture estimation, fixed-k samplers have been
plagued by slow mixing. They carry out a small experiment for a simple univariate
mixture model which demonstrates that output from a RIMCMC sampler collected
for a particular value of k mixes faster than output from a corresponding fixed-k

sampler. It would also be interesting to see how inferences using RIMCMC output
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separated by k compare to those from the fixed-k samplers. Different orderings
of move types can be attempted, to see if any particular orderings affect mixing or
output analysis results. There are numerous possibilities for modification of existing
move types and invention of new ones. A study of the sensitivity of the results to
specification of the prior distribution should be performed.

The validity of the RIMCMC convergence assessment technique in the absence
of certain ANOVA assumptions (especially independence of samples) should be
assessed. Since convergence seemed to occur very quickly for all examples in this
thesis, a study of the sensitivity of the diagnostics to different types of violations
of convergence would help to define the effectiveness of the technique. It may be
possible to construct additional diagnostics (e.g., using different ratios of mean-
squares) to add to the ability to detect convergence failure.

The model adequacy criteria used in RJMCMC were for the most part incon-
clusive in assessing the patterns studied in this thesis. A study of the sensitivity of
these methods to various deviations from model assumptions would help to deter-
mine their potential. Better discrepancy measures could certainly be developed.

For model comparison, it would be desirable to seek an acceptable way to use
a Laplace-Metropolis estimator even in the presence of label-switching; for many
authors, it is the Bayes factor approximation of choice. Better importance sampling-
based marginal likelihood estimators could also be constructed by the use of different
importance-sampling densities.

The mystery of frequent over-estimation of variance by batch sampling meth-
ods should definitely be analyzed in more detail; we suspect that the cause is negative

autocorrelation at higher lags. The validity of the normal approximation relied on to
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construct confidence regions and test statistics should also be assessed. Perhaps bi-
variate HPD regions (using a 2-dimensional kernel density estimate computed from
the posterior samples) could be explored; resulting tests and confidence regions
would likely be less conservative.

Analysis of a larger number of simulated point patterns would be helpful in
determining the coverage probabilities of confidence regions produced by the differ-
ent methods. The asymptotic properties of HPD intervals for circular parameters
can also be researched.

There are many possible alterations/extensions to the BVNPCP model con-
sidered in this thesis that are bound to yield more widely applicable methods. An
attempt should be made to account for the effects of the boundary of the study re-
gion, either by adjusting the model specification or incorporating edge-corrections
into estimators. Unequal mixing proportions (i.e., possibly different expected num-
bers of offspring per cluster) can easily be modeled; perhaps isolated offspring would
more easily be accommodated. Alternatively (or in addition), the model can be ex-
panded to allow for “noise” (events not belonging to any clusters), as in Fraley
and Raftery (1998). If more information is available a priori (e.g., probabilistic
assertions about relationships between certain offspring, certain regions more likely
to contain parent events, etc.), then a more informative prior could be used. For
example, genetic data recorded for seedlings can produce prior probabilities of each
pair of seedlings descending from a common parent. Genetic and spatial data are
usually analyzed separately in the study of population dynamics; the combination
of these two types of data offers the prospect of improved ecological inferences. The
location of a set of potential parent trees in a region (perhaps only an unknown frac-

tion of which can actually produce seedlings) can provide a mixture of discrete and
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uniform distributions for a prior on g. Types of dispersal distributions other than
bivariate normal can be modeled, dramatically improving the applicability of the
methods. For example, a dispersal distribution can be based on Gaussian plumes,
which are typically used to model the flow of particles from a smokestack in the
presence of a prevailing wind (see Thompson and Greenkorn, 1988; Pasquill, 1974).

Composite EM has a somewhat limited capacity to incorporate these kinds of
extensions due to heavy reliance on closed-form solutions for maximization, asymp-
totic variances, etc., which may be rendered intractable by overly complex models.
However, RIMCMC is a very flexible technique which requires only the quantities
used in Metropolis Hastings moves (traditional or reversible jump) to be known
analytically. As better understanding of convergence assessment methods and va-
lidity of various output analysis techniques increases, RIMCMC may become a more
powerful and widely usable tool for analysis of quite complicated variable-dimension

models.
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APPENDIX A
SELECTED PROOFS AND DERIVATIONS
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A.1 Proof of Theorem 1.1.7
Proof: Consider the PCP observed in a finite region A. Assume that h(-) is
continuous.
Let

(a1,b1), ..., (an,, bn,) be all ordered pairs of events in A from different parents
and

(c1,d1),...,(cn,,dn,) De all ordered pairs of events in A from the same parent
where

nqg = #(ordered pairs of events in A from different parents)

and
ns = #(ordered pairs of events in A from the same parent).
Note that i
ng = zp: Si(S:i—1)
where =
n, = #(parents).
Also define

Ni(dx) = #(offspring from parent ¢ in region dx).
As in the proof of Theorem 1.1.5, the notation suppresses dependence on A.
Consider two fixed locations x,y € A (well in the interior of A so that boundary
effects are negligible). Then
ng ne
N(dx)N(dy) = > Lax(aj)lay(b;) + Y lax(e;)lay(d;)
J=1 J=1

and so

Aa(%,y)
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E[N(dx)N(dy)]
1111
|dx],|dy|—0 |dx||dy]|

A—R2

L { ) E[E?dl1dx<aj>1dy<bj>+2;aldx<cj>1dy<dj>]}

|dx],|dy|—0 |dx||dy]|

. { , E[E?dlldx(aj)ldY(bj)]}
= lim lim (A1)

A=R2 | |dx],|dy|—0 |dx||dy]|
| B[ Laxlei)lay ()]
+ lim lim (A.2)
A=R2 | |dx|,|dy|—0 |dx||dy]|

We can simplify (A.1) as follows:

A= | |dx],|dy|—0 |dx||dy]|

—  lim { lim E [221 E;‘ZL]‘;&Z’ Ni(dX)NJ(dY)] }

A= | |dx[Jdy|—0 |dx||dy]|

— tm | pn Ele(np—1) B {N(dx)Ni(dy)}]
A=R2 | |dx|,|dy|—0 |dx||dy|

by Lemma 1.1.4: n, and {N;(dx)N;(d are independent
( y P J y p 9

and {N;(dx)N,;(dy)} are i.i.d. (for i # j))

- hm{ lim E[np(np—l)]<E[]|\§i(|1X)]>(E[Nj(dY)]>}

ASR? | |dx|,|dy|—0 |dy]|

(by independence of N; and Nj)



= m {5 [ ]}

(by stationarity, holding when A — R?)

. . 2.2
= i

= )\

(by Theorem 1.1.5)

We can simplify (A.2) as follows:

A= | |dx],|dy|—0 |dx||dy]|

= {[EnS] deﬁfcglmo E[ld)lccgijfl);;’yl(dj)]}}

(by Lemma 1.1.4: ny and {lax(c;)lay(d;)} are independent,

and {lax(c;)lay(d;)} are i.i.d.)

isi(s,»—l)] [ lim ELE (L) ay( ) ‘ p}]”

jdx],|dy|—0 |dx||dy|

(where p is the location of the common parent of ¢; and d;)
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= lim {[E{n})[E{S(S - 1} -

1 1
im —— [ Plc.edx.d, cd ‘ —dH
|dx],|dy|—0 |dx||dy|/A { / P&y p} |A| P

(by Lemma 1.1.4: n, and {S;(S; — 1)} are independent,
and {S;(S; — 1)} are i.i.d.;

and since p is uniformly distributed on A, having p.d.f. |,17|)

= Jim {[plAIE{S(S - 1)} -

1 /AP{cjedxp}P{djEdyp}dp]}

— lim
| A| |dx],|dy|—0 |dx| |dy]|

(since the locations of ¢; and d; are indpendent given p)

= lim {[pE{S(S - 1)}]-

AT AR -V R

= pE{S(S-1)}-
[ ab(ampidn fy b (ap)da
Alig%2 {/A |dx|%|1§§l|_>o { |dx| |dy| } dp}

(interchanging limit and integral, using Lemma 1.1.6 and

the Bounded Convergence Theorem: see Chung (1974, p. 42))
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= pEgsis 1} tim | [ hx-ph(y —p)ap

(by the Fundamental Theorem of Calculus:

see Khuri (1993, Theorem 6.4.8))

= pE{S(S -1} ha(x—y)

(by the definition of hs)

Finally, putting it all together, we have
A(x,y) = (A1) + (A2) = N +pE{S(S — 1)} ho(x—y). O

A.2 Derivation of E(X") for X ~ Poiss()\)
Suppose X ~ Poiss(A) and n is a positive integer. Let ¥(¢) denote the moment
generating function of Poiss(A),
U(t) = exp {A[exp(t) — 1]},
and U™ (ty) denote the m'™ derivative of \I/( ) with respect to t evaluated at t,
"t

Tm(t) = )

8tm

to

Then E(X") = ¥()(0).
We prove the following lemma by induction:

Lemma A.2.1 For any positive integer n,

n

V() = N exp {A [exp(t) — 1] + jt}

=1
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where

1, ifj=1lorj=n
Un,j = (Ag)

Jlan-14) + @n-1,-1, otherwise.

Proof: First note that ¥ (#) = Xexp {)[exp(t) — 1]}, and so the lemma holds
for n = 1. Suppose that the lemma holds for n = m, where m > 1. We must show

that it holds for n = m + 1, i.e.,
m+1

T () = ampr ;N exp {\ exp(t) — 1] + jt},

=1

where {am,11,;} is given by (A.3):

gt () = Z (am, N exp {X[exp(t) — 1] + jt}) (Aexp(t) + J)

7=1

(am X+ exp {X [exp(t) = 1]+ ( + )t} +

1

jamJ)\j exp { A [exp(t) — 1] + jt})

m

J

= amairexp{Afexp(t) —1]+t} +

m

> (amjo1 + Jamg) N exp {A[exp(t) — 1]+ jt}  +

=2

A A" exp {\ [exp(t) — 1] + (m + 1)t}

= amyrarexp{A|exp(t) — 1] +t} +

S eV exp (M exp(t) — 1] 4 jt} +
7=2
A 1,m 1 A" exp {A [exp(t) — 1] + (m + 1)t}
m+1
= Z Amy1 ;N exp {\ [exp(t) — 1] + jt}.
7=1

Thus the lemma is satisfied for any integer n > 1, and the proof is complete. [
We can determine E(X") from Lemma A.2.1 with ¢ = 0:

E(X™) = M0



170

n

= Z an N exp { X [exp(0) — 1] + 5(0)}

J=1
n

= Zanﬂ)\j, where {a,;} are defined by (A.3).

=1

A.3 Simplification of Integral in Observed-data
Likelihood (2.13)

Counsider the observed-data likelihood of the BVNPCP observed in a region

A € R?, as given by (2.13). First, we have

I o J] txmsion o

= skl sl (s k) ([ [ Y2
A A
since p(k|®,n)p(p,s|k, @, n)p(Z|p,s, k, ®,n) is constant in p (see (2.5),(2.8),(2.9)

and (2.11)). Define the notation

X;, iS5, >0 ) . .
[(X,]% = (for any expression X; depending on )
1, otherwise
and
X;, iS5, >0 ) . .
[(X:]® = (for any expression X; depending on )
0, otherwise

and an alternative indexing scheme for Y:

/
I

Yit,-- o Yie = (Wi Yie)s - (Yiks, Vi)'

= locations of offspring from parent .

The remaining integral can be re-written as:

//A"'//Ap(wzau,k,@,n)d,,,
- //A‘”//Aﬁﬁ[h(}q_y’i)]zjidﬂf

=1 5=1
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- //A‘”//Al.lf[l -ﬁh(yzj—m) @ dp
) // I A H { v 2w<an;2 —oh) [2<ana;1_ %)

{020 Wi — pin)* + o1 (yigiz — 1i2)” — 2002 (g — pin) (vige — pi2) 1] dpe

R |

i Si
{022 Z (Yija — pi1) o (Yijiz — Mzz
J=1

7=1
S &2
2012 ) (yija — p) (Yije2 — /m)}] } dpe
7=1
r 1
H exp (o110 oiy) '
=1 <\/27T 0110929 — 0'12 H¥22 = %12
{ (Z Yiza — 2 Z Yijn + 5:’#?1) +
7=1
S;
(Z Yij:2 2/““2 Z Yijiz + S MzZ) -
Si S; S @
2012 YijaYiji2 — Mat Z Yijia — Hi2 Z Yija + 5'/«%1/«%2) } du)
7=1

1 (// -
= exp TR
<\/27T(011022 — 012 -1 2(011022 — 01,)

o | Si l/«bil -3 Z Yijsi| + Z y?jﬂ B [Z Yij
2 j=1 j=1 2 j=1

2

_|_

2 s . s 2
+ Z Vi — = lz ym] -

S.
1 2

o | S lMiZ - § Zyzj;z
k] ]:1
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S S S
1 « 1 « -

20-12 (Sz !/’Lll - g Z yl]J] !MzZ — g Z yij;Z —I— Z yij;lyij;Z _
t =1 ! =1 J=1

1 S S &
< [Z yz’j;l] [Z yz'm]) } du)
t Lj=1 7=1
k
: (o |5
= — exp .
<\/27T(011022 — Ufz)> ,11 2(011022 — 01,)
2 S 1 S 2
) +on (Z y?j;z -3 [Z yzm] ) -
— O

S, S,
k3 1 k3
2012( YiiaYisz ~ o !Zyu 1] ZymD}] -
] k3
—1

1
27T 011022 — // exp .
my (%) (%) - (%)

)b

: : &
1 & 1 &
2012 (Sz !Mu 5 Z yz’j;ll !/Mz G Z y,'m]) } du)
k] jzl F) ],:1

1 [ —1
= n | €XP :
|:<\/27T(011022 — U%z)) ] 2011022 = o1)
k

- - . 2m .
{022 Zyjzl +on Zyjz'z — 2012 Zyjlyjz}] !H (? 011022 — U%z) ] '
j:l j:l j:l =1 2
S 2
Zyl],Zl -
j=1

_]_ k 1 S,' 2
o 2(011022 — 01y) ; S; 722 lz_: Yija| +on
2012 lz yz’m] [Z yij;z] }) H Xz € A (A.4)
5=t 7=1 =1

where

1 S 1 S / 1
S TS S e
N (sZy sZy) L
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A.4 Derivation of Asymptotic Variance for the
BVNPCP(A, k,n) in Composite EM

In this section we derive expressions for

‘L(6;Y,Z.k
Ez{a ( i 27 9 ) 07Y7k}
06

and

00 06
for use in (3.15) for the BVNPCP(A, k,n) . The resulting variance estimate @(a(k))

B, HaL(e;Y,z,k)}{aL(e;Y,z,k)}’

e,Y,k]

. L . ~(k) SR (k)
can then be obtained by plugging in the EM estimates 8 " = {¥X ", '} for 8 and
Z®) for {Zji} (see Algorithm 3.3.1 and the definition of z;; below), and inverting
the matrix as given in (3.15).

The following notation is used:

Number of components in mixture model: %

Parameters of mixture model:

0 = {27’1’}:{011702270127M117M127'"7Mk17Mk2}

e Observed data (offspring locations):

Y = {y117y127"'7yn17yn2}

Latent data (allocations):

Z = {211,...,Zn1,...,Zlk,...,an}

Conditional expectations:

5]‘,' = E [Z]‘,' |0,Y,k] .

The complete-data log-likelihood L (8; Y, Z, k) is given by (3.1),(3.2) and (3.6)
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as:

L(0:Y,Z,k)

k n
n 1 _
= —nlogk—nlog(%)—510g|2|—§§ > i (v — ) T (v — o)

=1 j=1
= —nlogk —nlog(2r) — glog(anazz —o?,) —

n

k
]_ 099 2 011 2
3 Z Z Zji [—z(yjl —pia) + 5 (Y — pi2)” —

0110929 — O 0110929 — O
i=1 j=1 11922 12 11922 12

2 (Y1 — pa)(Yj2 — piz)

011022 — 019

2013 ]

Because of symmetry, we need not give all expressions in full form. In what
follows, the shorthand notation “17 < “2” is used to prescribe that all occurrences
of the index “1”7 should be replaced by “2”7, and vice-versa. In other words: oy
becomes o3, 022 becomes o011, y;1 becomes y;2, yj2 becomes yj1, 11 becomes pijz,
and g, becomes .

First-order partial derivatives:

OL (G;Y,Z,k)
doy
2 n
—N0o22 O59 ,
- + 2y — i)+
201102 — 0%,) 201109 _U%Z)zzz gi (i1 — par)

=1 j7=1
2

k
g
= Z Zji (2 — pi2)* —

2(011092 — 0y)

[}

oL (0:Y,Z,k) oL (6:Y,Z,k)

60'22 60'11

Wlth LL177 H LL277
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IOL(6;Y,Z,k)
60'12
k n
_ noig 022012
_ — - ZE g Z4i y]l /~Lll -
011022 — Oj9 (011022 012 i=1 j=1
k n

011012 ZZZzﬂ (yj2 — ti2) 24

(011022—012 i=1 j=1

k n

011092 + 07
12 Z Z Z]z yjl ,uzl) (y]2 - /MZ)

(011022 - 012)2

=1 j7=1
OL(0:Y,Z, k)
dpir
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Expressions for Fyz [{QL(eé:’z’k)} {aL(agg,z,k)}

At this stage we require conditional expectations of cross-products of z;; for

Q,Y,k}:

various j and ¢. First, since z; € {0,1}, we have

E(310,Y k) = E(2;10,Y,k) = Z; .
Allocations for different offspring are independent, so that
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= Zjizyy for any ¢,7 and j' # j .

For each offspring 7, only one z;; can be 1, so that

E(z;z;i|0,Y,k) =0 for any i #1.
So, for example,
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A.5 Jacobians for Confidence Intervals / Re-
gions in Composite EM

In this section we give expressions for the Jacobian ((3.29), before estimates

o are plugged in):

-t} [t o, e

for use in (3.28) for the BVNPCP(A, k,n) , for the following choices of f(o), where

o = (011,092,012)":
1. ¢ = (log o1y — log 092, 2(p12))  (see (3.32))
2. logoyr (see Definition 1.1.9)
3. logoys  (see Definition 1.1.9)
4. z(p12) (see Definition 3.5.1)
5. logy  (see Definition 1.1.10 and Fact 1.1.11)
6. log ¥  (see Definition 1.1.10 and Fact 1.1.11)

7. ¢  (see Definition 1.1.10 and Fact 1.1.11).
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1 —1
C _— —_
60' _ o1 022 0
60' —012+/022 —012+/011 V011022

2(o11022 —052)\/011 2(o11022 —0f2)\/022 (011022 —052)
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0g 011 _ Tl 07 0
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ol [ 1
08 72 =10, —, 0
Jdo 022

022(011 - 022) - 20%2

T 011(022—011)—2032
2(011022 — 03y) [(011 — 022)2 + 40%2] ’
2012(011 + 022)

Olog¥ 1 [ 2015]
90 = 2(011022 _0%2) 022, 011, 012

130 1
Jdo

1
(022 — 011)% — (022 — 011) [(022 — 011)2 + 40%] > +4ol,

—012 {1 + (o1 — o) [(011 — 022)" + 4oy

o=
——

019 {1 + (0'11 — 0'22) [(0-11 — 0-22)2 + 40—%2]_5

(011 — 022) + [(011 — 022)2 + 4032] - 4032 [(011 — 022)2 + 40%2]_5
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A.6 Derivation of Expectations of Variation Es-
timates Used in Convergence Assessment

First, we (trivially) have (5.24) by Winer (1971, p. 163) and (5.29) by Winer
(1971, p. 325).
Proof of (5.23): Consider ANOVA 1 in Table 5.1. From Winer (1971, p. 165), we
have that
EMSa, = Tog, + 0len)
and so

EV - EMStot

1
= or 15w
1
= CT — 1E [Ssch + SSer(ch)]
1
= 71 [(C —1)EMSa, + C(T — 1) EMSex(ch))
2 (c-1T ,

= Oaten) T 5 —1 Och O

Proof of (5.25): Consider ANOVA 2 and ANOVA 3 in Tables 5.2 — 5.3. The

quantity SSeymo) in ANOVA 2 can be re-written as follows:

SSer(mo) = Z Z Z (QZM - gm)z



193

)
£
X -
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m [p)
wn [@p]
v Il
Il o)
~~
[\l L
~~~ (=Y
§ _
. O
A5 =)
. O
_ I
~—

C M Rem
m=1r
C
=1

Each term can then be simplified:

r=1

=1

C M Rem
1m

O = > B 0= > 0L, 6, => > 6, and 8. =) > > 6
c=1r

c=

C Rem
=1
‘m

M Rem
m=1r=1
(9. -

and finally, using the notation
Rcm
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c=1 | m=1
°  [X 1 1 1

— 2;(90—9) _;(90m—ﬂ90—59m+0M9>]
C — —

= 2) (6.—6) 16 —90.—59..+59}

Therefore,
SSer(mo) = SSer(chxmo) T 3Sch + SSchxmo-

Now we derive the expected mean-squares for chain and chainxmodel, using
terminology from ANOVA 3 (Table 5.3). Several steps in the derivations use the
following ANOVA assumptions (and not always with explicit reference):

iﬁm =0, Ea. =0, E(af)em =0, Eel,, =0, and
Eﬁlﬂ{ac} A(aB)em ), {en,} are mutually independent. (A.5)
For simplicity of notation, let e/ = €om(3)-
First, EMS,:
1 o
EMSs = 5 E {TZ (6. —¢.) }

C M Rem

) DN

c=1 m=1 r=1

T
-l Z{fzz(wacwm/ 0o+ )~

c=1 m=1 r=1 m/=1 r'=1

Rcm

c M 2
%Z Z Z( + Qe —I'ﬁm' (aﬁ)cm/—l_ec'm')}
'=1 m'=1r'=1
{ (/“L + a. + % mZZ:IRcm’ﬁm'

cm’ 056 cm'! +

”M:
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(all sums of cross-products are 0, by (A.5)
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M

- ﬁ {T(C— 1)o? + CZ,TTZ le ;(CRCW C R B+

CT2 ZZRZ E(aB)? Z ZRC,m,E aB)i, .+

m'=1c=1 m’ 1c'=
T(C - 1)Uzr(chmo)}
T
M C

= Taczh—l- Cszz_:l ; Rem — Ro)’| B, +

GODILS

c=1m=1

2
Ch><mo er(ch)(mo)

Next, EMSchxmo:
1 7. 5o ~\2
EMSCthO — C— 1)(M _ 1)E {Z Z Rcm (ecm - ec. - em + 9) }
R

{
1 C M Rem 1 Rem
OIS {RC S (44 et (@)on + )

—1 "
c=1 m=1 r=1 r'=1
1 M Rem
fZZ(M—I_aC—I_ﬁm' (aﬁ)cm/ cm>_
m/=1 r'=1
C Rem



C M Rem

SIS (i oo B+ (o + ez,’m/)}

=1 m'=1r'=1
C M Rem

C—1) _1EZZZ{u+a + B+ (aB)em

c=1 m=1 r=1

1 & R 1l — —
(M + 5 223105 + ﬁ mz/::lan’ﬁm’ + ﬁ CZ::l mz/::lR m (

1 C M Ren 1 c 1 ¢
GRSV 9P {<5 20 Ry 2l

2
1
ﬁ Z Z Rc’m'(aﬂ)c’m’> + (écm — é.c, - é:m + 6)2}
1

(all sums of cross-products are 0, by (A.5))

+ ) —
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At this point we simplify the last portion:

1 1 1 =
— E e - e /e e ! o € Lo !
ecm M Tnz/_:lecm C C/:1€Cm —I_ CM C/z:::l Tnzlzzlecm
[ 1 M C 1 C M
= E (écm)2 + W Z (7cm’)2 + 2 Z(é.c’m)z + C2M?2 Z Z (éc m’)z
| m'=1 c'=1 =1 m’=1
M
3 2 2 2 2 2 B 2 o2
M( cm) C( cm) CM( ) CM( cm) C M? mz/::l( cm')
2
CZM C/ c'm
1 1 1
- N 4 2 N
— B (G + ()’ + Gl +
2 2 2 2 . 2
M(ecm)z - E(ecm)z + C—M(ecm)z + C—M(ecm)z - C—M(ecm)z -
2
C—M(ecm)2:|
= p [(CM)* 4+ C*M +CM? + CM —2C°M — 2CM* +
2CM +20M — 20M — 2CM] E(E,, )?
1 zr chxmo)
= Gagp [(CM)* = C*M — CM* + O M] ﬁ
_ (C - 1)(M - 1)02
- RcmCM er(chxmo)
Now, resuming again with EMSpxmo:
EMSCthO
C M Rem C
= E CRom — Ry)? 0

1 M
(Csz 3" (CRop — R m) +
m'=1

C
((aﬁ Jom TQZRW 0B + i (0o +

=1 mc’l
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2 2
CZTZ Z ZRC 'm! Oéﬁ c'm’ chm(aﬁ)zm - ERcm(aﬁ)zm +
c'=1 m'=1
2 (08t 2 R (8~ 2 S (e
CT CT1 cm TRm Ccim Ccim CT2 m/:1 Ccm Ccm

C
2 2 (C-1HM-1) ,
R.CT E Rc/m(Oéﬁ)c’m> + ( R..CM T er(chxmo)
= 1 .
2
Fz g7 2 (CRom = Ron)' o,

=1

)+

M
1
2 2
T2 E Rcm’ T chxmo

Csz Z ZR m'UChxm"]

c'=1 m'=1

%Rcmaczhxmo:| o ZZRcm |:RQ—.chmo-C2hxmoj| —I_

c M
ZZR [C?TRchctho] + ZZRcm |:TR Rzm ch><m0:| -

c=1m=1

_|_

C 9 M Y )
T; CT? g::lem,Ucthmo] P R.CT ZRcm O mo >+

c=1m=1

1 - )2 2
€= - {(szz ) '

c=1m=1

~ R, ﬁ,‘i) +
c=1m=1

CTO'CthO‘|‘ ZZRcm ch><m0

clml

(S5 [ 1>a;<m>])}

TN TN
Q=
~
M-
M:
)
=
3
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1 c M
ZZ h><mo + ﬁZZRszEtho -

c=1m=1 ' c=1m=1

2
_ZZRZ U chxmo QZZR—.UZthO

c=1m=1 c=1m=1

CTZZRZ Utho+ ZZ . h><m0_

c=1m=1 c=1m=1

ﬁZZRzmathmo - ﬁZZRzmathmo> +

c=1m=1 c=1m=1

((C—l)(M o; (tho>)}

CR Ron)?
. R

M

1
C2T(C — 1)(M — 1)Z

=1

CT + TZZR2 + ZZ— + —ZZR2

c=1m=1 c=1m=1 c=1m=1

SN I CNES ) L))

c=1m=1 c=1m=1 c=1m=1 c=1m=1

4
ﬁZZRzm

c=1m=1

2
Tch +

C

> (CRep — R)’

c=1

Br+

1
(C—l)(M—l

2
T chxmo + Uer(ch Xmo)
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Finally, putting it all together,
EWm = EMSer(mo)

1
= mE [SSer(chxmo) + SSeh + SSehxmo]
1
= =57 [C(T = M)EMSs(ahmo) + (C = 1) EMSa, +
(C —1)(M — 1)EMSchxmo)
cC(Tr-M) ,
= ﬂaer(ctho) +
M
C — ]- T0'2 _I_ ]- Z Z (CRcm . Rm)Z 62 —|—
CT B M - (C - 1)02Tm:1 c=1 B
1 c M
ﬁZZRzm Uthmo + Uer(ch)(mo)} +
c=1m=1
c M 2
(C-1)(M-1) 1 (CRow — R)?|
Gy | [T 1)) Damy e KO
1 iw: Y (CRew — Ry)*| B +
CTT(C— )M —1) 2= | & .
c M cC M
1 C+1 R
CT R R2 _ cm
(C—1)(M—1) CT PSS T
c=1m=1 c=1m=1
c M
2 RS,
fzz R Uthmo + Uzr(ctho)}
c=1m=1""""
_[er-M)y+C—-1+(C-1)(M-1)] ,
- CT - M Uer(ctho) +
c M 5
1 1 (CRop — Ro)
CT - M (C_l)T—I_EZ R o4 +
c=1m=1 m
2 NS (O Ra|
(CT B M)CZTmZI c=1 - " B
c M
1 C—1 C+1 1 2R\ .y |
T — _
c M 2
_ 2 (€ -UT 1 (CRew — Ru)*|
= Tetexmo) T\ ar T GHOT — ) ;mz::l R, Zen




202

9 C
C3T — czMTZ 2_; )| 82+
cTr R?
CT—M ' CT— Mz;mz:l
9 c M Rzm )
ﬁ;;(cmm—}zm) | T O




203

APPENDIX B
RIMCMC ALGORITHM PERFORMANCE
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Pattern Split Combine Birth Death

Redwoods 0.051881 0.052235 0.016041 0.015028
11669 (224919) | 11754 (225020) | 1202 (74933) | 1129 (75128)

[-k7-a 0.045025 0.045321 0.010568 0.009763
10124 (224853) | 10208 (225239) | 793 (75037) | 731 (74871)

I-k7-b 0.024376 0.024257 0.005143 0.00611
5494 (225390) | 5448 (224598) | 386 (75053) | 458 (74959)

I-k14-a 0.036347 0.036521 0.007409 0.007321
8184 (225163) | 8205 (224666) | 551 (74366) | 555 (75805)

[-k14-b 0.025911 0.025978 0.007473 0.007805
5850 (225777) | 5841 (224844) | 560 (74940) | 581 (74439)

AT-1.5-k7-a 0.01712 0.01695 0.00367 0.004408
3847 (224713) | 3819 (225311) | 274 (74654) | 332 (75322)

AT-1.5-k7-b 0.008435 0.008272 0.002047 0.002679
1892 (224292) | 1869 (225953) | 153 (74728) | 201 (75027)

AT-1.5-k14-a 0.041356 0.040739 0.00797 0.010071
9313 (225190) | 9178 (225290) | 595 (74651) | 754 (74869)

AT-1.5-k14-b 0.036242 0.037254 0.00972 0.00667
8142 (224656) | 8387 (225130) | 730 (75102) | 501 (75112)

Al-3-k7-a 0.013192 0.013185 0.003597 0.004026
2969 (225056) | 2962 (224649) | 269 (74782) | 304 (75513)

AT-3-k7-b 0.023627 0.023558 0.004029 0.004599
5312 (224828) | 5295 (224761) | 302 (74960) | 347 (75451)

Al-3-kl4-a 0.038546 0.038566 0.008633 0.009289
8688 (225392) | 8662 (224603) | 650 (75289) | 694 (74716)

AT-3-k14-b 0.045239 0.045145 0.010964 0.01091

10167 (224740)

10176 (225407)

821 (74879)

818 (74974)

Table B.1: Acceptance rates for dimension-changing moves, for all sweeps in all
chains. Entries are: acceptance rate, #successes, (#total).
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Pattern NNy, Violation in Mg | k = ky; in Ms/Mpg | k =k, in Mo /Mp
Redwoods 0.172258 3.3e-005 7e-006
38744 (224919) 10 (299852) 2 (300148)
I-k7-a 0.155804 2e-005 3e-005
35033 (224853) 6 (299890) 9 (300110)
I-k7-b 0.083331 0 3e-006
18782 (225390) 0 (300443) 1 (299557)
I-k14-a 0.143243 1e-005 7e-006
32253 (225163) 3 (299529) 2 (300471)
I-k14-b 0.074268 2e-005 2.3e-005
16768 (225777) 6 (300717) 7 (299283)
AI-1.5-k7-a 0.168722 7e-006 7.7e-005
37914 (224713) 2 (299367) 23 (300633)
AI-1.5-k7-b 0.053511 0 0.000136
12002 (224292) 0 (299020) 41 (300980)
AI-1.5-k14-a 0.071482 3e-006 6.7e-005
16097 (225190) 1 (299841) 20 (300159)
Al-1.5-k14-b 0.202906 0 0.000183
45584 (224656) 0 (299758) 55 (300242)
AI-3-k7-a 0.158165 1.3e-005 1e-005
35596 (225056) 4 (299838) 3 (300162)
AI-3-k7-b 0.089428 3e-006 9e-005
20106 (224828) 1 (299788) 27 (300212)
Al-3-kl4-a 0.070739 0 0
15944 (225392) 0 (300681) 0 (299319)
Al-3-k14-b 0.104592 T7e-006 1e-005
23506 (224740) 2 (299619) 3 (300381)

Table B.2: Occurrence rates of move-disqualifying conditions, for all sweeps in
all chains. Entries are: occurrence rate, #occurrences, (#total).
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APPENDIX C
POINT PATTERNS, SHOWING TRACKED OFFSPRING



207

Locations of offspring

Figure C.1: Locations of Redwood seedlings, with tracked offspring marked.
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Figure C.2: Simulated point patterns, with tracked offspring marked.
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Figure C.2 (continued).
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APPENDIX D

SAMPLE TRACE PLOTS, CLUSTER MEMBERSHIPS, AND ACF’S
FOR REDWOOD DATA
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Figure D.1: Trace plots of monitored parameters for a 2,000-sweep RJIMCMC run,
Redwood data.
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Figure D.1 (continued).
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Figure D.2: Trace plots of monitored parameters for a 200,000-sweep RJMCMC
run, Redwood data.
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Cluster memberships for last k=7 Cluster memberships for last k=10

(sweep #198490) (sweep #199740)
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Figure D.3: Sample cluster memberships, Redwood data.
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Figure D.4: Autocorrelation functions of normalized versions of monitored param-
eters in latter half of sweeps (every 10" value used), Redwood data.
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Figure D.4 (continued).
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APPENDIX E
CONVERGENCE ASSESSMENT PLOTS
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Figure E.1: Potential scale reduction factor and maximum eigenvalue plots for
(1Og J11, 1Og 0322, Z(IO12)) and (/“le 1y Hgi2s Hgals Hja2s Hisls Mj32)7 Redwood data.
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Figure E.2: Potential scale reduction factor and maximum eigenvalue plots for
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Figure E.2 (continued).
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Figure E.3: Potential scale reduction factor and maximum eigenvalue plots for
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Figure E.5: Potential scale reduction factor and maximum eigenvalue plots for
(1Og J11, 1Og 0322, Z(IO12)) and (/“le 1y Hgi2s Hgals Hja2s Hisls Mj32)7 [-k14-Db.
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Figure E.5 (continued).

232



233

PSRF's of Vhat vs. Wc for Sig Max. e.v. of Vhat and Wc for Sig
o
S A —
— —— Multivariate
ffffffff log(sig11)
ffffff log(sig22) R
———— 2(rho12)
5 . 8
— E ©
g
:
badl o
< a | <
S = A e T T T T T T T R
= &
v Z e
g g N
a 5 9
IS o
o
o
< o
- o |
T T T T T T T T
5 10 15 20 5 10 15 20
batch number = (batch size)/500 batch number = (batch size)/500
(a) PSRF: X, V vs. W, (b) Max. e.v.: X, V vs. W,
PSRF’s of Wm vs. WmWc for Sig Max. e.v. of Wm vs. WmWc for Sig
<
—— Multivariate 2 1
———————— log(sig11) N
ffffff log(sig22) ~—
———— 2(rho12) - e
° = P - e I
g | g o
e o z 2 A
2 s °
a > _ B
N _ — S
5 : o
2 g o
€ w o 4
2 8 1 % S
5 o =
; £
s 2
: -
s o
8 £
<
-
e
o
T T T T T T T T
5 10 15 20 5 10 15 20

batch number = (batch size)/500 batch number = (batch size)/500

(c) PSRF: X, W,, vs. W,,,W, (d) Max. e.v.: X, W, vs. W,,,W,

Figure E.6: Potential scale reduction factor and maximum eigenvalue plots for
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Figure E.7: Potential scale reduction factor and maximum eigenvalue plots for
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Figure E.8: Potential scale reduction factor and maximum eigenvalue plots for
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Figure E.9: Potential scale reduction factor and maximum eigenvalue plots for
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Figure E.10 (continued).
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Figure E.12: Potential scale reduction factor and maximum eigenvalue plots for
(1Og J11, 1Og 0322, Z(IO12)) and (/“le 1y Hgi2s Hgals Hja2s Hisls Mj32)7 Al-3-kl4-a.



max. e.v. of We(-1)*Vhat

max. e.v. of WmWcA(-1)*Wm

1.002 1.004 1.006 1.008

1.000

1.008

1.004

1.000

0.996

PSRF's of Vhat vs. Wc for Mu

Multivar.
mull
mul2
mu2l
mu22
mu31l
mu32

10

15 20

batch number = (batch size)/500

(e) PSRF: u, Vivs. W,

PSRF’s of Wm vs. WmWc for Mu

Multivar.
mull
mul2
mu2l
mu22
mu31
mu32

10

15 20

batch number = (batch size)/500

(g) PSRF: p, W, vs. W,,,WW.

max. e.v.(Vhat) and max. e.v.(Wc)

max. e.v.(Wm) and max. e.v.(WmWc)

Max. e.v. of Vhat and Wc for Mu

0.010 0.015 0.020
1 1 1
//
\

0.005

0.0

batch number = (batch size)/500

(f) Max. ev.: p, Vivs. W,

Max. e.v. of Wm vs. WmWc for Mu

0.020
1

0.015
I
/

0.010
1

0.005
1
|
I
|

5 10 15 20

batch number = (batch size)/500

(h) Max. ev.: g, W, vs. W,,,W,

Figure E.12 (continued).
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Figure E.13: Potential scale reduction factor and maximum eigenvalue plots for
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249

APPENDIX F
HISTOGRAMS OF K = NUMBER OF CLUSTERS
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Figure F.1: Histogram of k in post-convergent RIMCMC sweeps, Redwood data.
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Figure F.2: Histogram of k in post-convergent RIMCMC sweeps, simulated pat-
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Figure F.2 (continued).
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Figure F.2 (continued).
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APPENDIX G
P(K) ESTIMATES USING DIFFERENT METHODS
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Figure G.1: P(k) estimates using visit frequency from RIMCMC vs. BIC from EM,
Redwood data.
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Figure G.2: P(k) estimates using visit frequency from RIMCMC vs. BIC from EM,

simulated patterns.
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Figure G.2 (continued).
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Figure G.2 (continued).
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Figure G.3: P(k) estimates using visit frequency from RJIMCMC vs. penalized max
marginal likelihoods and robust harmonic marginal likelihood mean, Redwood data.
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Figure G.4: P(k) estimates using visit frequency from RIMCMC vs. penalized
max marginal likelihoods and robust harmonic marginal likelihood mean, simulated

patterns.
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Figure G.4 (continued).
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Figure G.4 (continued).
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Figure G.5: P(k) estimates using visit frequency from RIMCMC vs. penalized
mean marginal likelihoods and harmonic marginal likelihood mean, Redwood data.
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Figure G.6: P(k) estimates using visit frequency from RIMCMC vs. penalized mean
marginal likelihoods and harmonic marginal likelihood mean, simulated patterns.
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Figure G.6 (continued).
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Figure H.1: P-values from posterior predictive distribution-based discrepancy mea-
sures, Redwood data.
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Figure H.2: P-values from posterior predictive distribution-based discrepancy mea-

sures, simulated patterns.



P-value

P-value

270

P-values from discrepancy measures P-values from discrepancy measures
——  %O0ut50%CR(mode) ——  %O0ut50%CR(mode)
******** %O0ut50%CR(MC) ---=--== %O0ut50%CR(MC)
g T ettt Acc. of Sig est.(MC) o | L= Acc. of Sig est.(MC)
9 (=] G- o _
9 o T
© \\\
< "o
.
<
© [}
=
£ o
o o o
° )
S o
]
o
i
2
T T T T T T T T T T
4 5 6 7 8 7.0 7.5 8.0 8.5 9.0
k k
(¢) A-1.5-k7-a (f) AI-1.5-k7-b
P-values from discrepancy measures P-values from discrepancy measures
© | ——  %Out50%CR(mode) ——  %O0ut50%CR(mode)
S R %Out50%CR(MC) I %Out50%CR(MC)
ffffff Acc. of Sig est.(MC) --———- Acc. of Sig est.(MC)
_-0
e
n
S © |
o
E
©
S g 3
2 o
N
o T T T T T T T T T T
7 8 9 10 11 12 6 8 10 12
k k

(g) AL-1.5-kl4-a

(h) AI-1.5-k14-b

Figure H.2 (continued).
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Figure H.2 (continued).
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Figure H.3: Boxplots of C@ﬂk values for different k, Redwood data.
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Figure H.4: Boxplots of C@WC values for different k, simulated patterns.
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Figure H.5: Sum of log C@ﬂk for different £, Redwood data.
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Figure H.6: Sum of log C@WC for different k, simulated patterns.
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Figure H.6 (continued).

279



d3r

Boxplot of d3r

1.0

0.4 0.6
\ \

0.2

Figure H.7: Boxplots of c/l\3j|k values for different k&, Redwood data.
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Figure H.8: Boxplots of c/l\3j|k values for different k, simulated patterns.
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Figure H.8 (continued).
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Figure H.9: Histograms of c/l\3j|k by k, Redwood data.
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APPENDIX 1

CONFIDENCE REGIONS AND TESTS FOR ISOTROPY /
ANISOTROPY
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Figure I.1: Confidence regions and tests for isotropy/anisotropy using composite

EM and HPDR and normal approximation from RJMCMC, Redwood data.
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Figure 1.2: Confidence regions and tests for isotropy/anisotropy using composite
EM and HPDR and normal approximation from RJMCMC, simulated patterns.
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APPENDIX J

POSTERIOR DENSITY ESTIMATES AND COMPONENTWISE
CONFIDENCE INTERVALS FOR SIGMA PARAMETERS
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Figure J.1: Non-parametric Gaussian posterior density estimate and 95% confidence
intervals for log(o11), using composite EM, HPDR and normal approximation, Red-

wood data.
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Figure J.2: Non-parametric Gaussian posterior density estimate and 95% confidence
intervals for log(cy1), using composite EM, HPDR and normal approximation, sim-
ulated patterns.
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Figure J.2 (continued).
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Dens. est. and 95% CI’s for log(sig22)
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Figure J.3: Non-parametric Gaussian posterior density estimate and 95% confidence
intervals for log(o,2), using composite EM, HPDR and normal approximation, Red-

wood data.
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Figure J.4: Non-parametric Gaussian posterior density estimate and 95% confidence
intervals for log(cgs), using composite EM, HPDR and normal approximation, sim-
ulated patterns.
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Figure J.4 (continued).
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Figure J.5: Non-parametric Gaussian posterior density estimate and 95% confi-
dence intervals for z(p12), using composite EM, HPDR and normal approximation,

Redwood data.
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Figure J.6: Non-parametric Gaussian posterior density estimate and 95% confi-
dence intervals for z(p12), using composite EM, HPDR and normal approximation,

simulated patterns.
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Figure J.6 (continued).
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Dens. est. and 95% CI's for log(gamma)
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Figure J.7: Non-parametric Gaussian posterior density estimate and 95% confi-
dence intervals for log~, using composite EM, HPDR and normal approximation,

Redwood data.
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Figure J.8: Non-parametric Gaussian posterior density estimate and 95% confi-
dence intervals for log~, using composite EM, HPDR and normal approximation,

simulated patterns.
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Figure J.8 (continued).
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Figure J.9: Non-parametric Gaussian posterior density estimate and 95% confi-
dence intervals for log ¥, using composite EM, HPDR and normal approximation,

Redwood data.
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Figure J.10: Non-parametric Gaussian posterior density estimate and 95% confi-
dence intervals for log ¥, using composite EM, HPDR and normal approximation,
simulated patterns.
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Figure J.11: Non-parametric Gaussian posterior density estimate and 95% con-
fidence intervals for ¢, using composite EM, HPDR and normal approximation,

Redwood data.
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Figure J.12: Non-parametric Gaussian posterior density estimate and 95% con-
fidence intervals for ¢, using composite EM, HPDR and normal approximation,
simulated patterns.
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Figure J.12 (continued).
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APPENDIX K

BIVARIATE NORMAL CONTOURS OF ESTIMATED OFFSPRING
DISPERSAL DISTRIBUTION
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Cluster implied by Sig estimates
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Figure K.1: Bivariate normal contours of estimated offspring dispersal distribution,
using RIMCMC posterior means and composite EM, shown to scale, Redwood data.
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Figure K.2: Bivariate normal contours of estimated offspring dispersal distribution,
using RJIMCMC posterior means and composite EM, shown to scale, simulated

patterns.
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Figure K.2 (continued).
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Figure K.2 (continued).
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Figure K.3: Bivariate normal contours of estimated offspring dispersal distribution,

by k, Redwood data.
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APPENDIX L
POSTERIOR DENSITY ESTIMATES, BY K, REDWOOD DATA
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Figure L.1: RJIMCMC posterior density estimates, by k, Redwood data.
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Figure L.1 (continued).

334



339

APPENDIX M
TABLES OF RIMCMC DETAILED RESULTS
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Pattern logoyr logoze z(p12) logy log W ) o plk|Y)

Redwoods 60 60 105 114 60 54 111 48
(500)  (500) (285) (263) (500) (553) (270) (625)

[-k7-a 249 498 498 498 249 102 375 114
(120)  (60)  (60)  (60) (120) (294) (80)  (263)

I-k7-b 750 750 3000 1500 750 1500 999 600
(40) (40) (10)  (20) (40) (20) (30) (50)

I-k14-a 90 54 129 165 81 135 150 36
(333)  (555) (232) (181) (370) (222) (200) (833)

[-k14-b 300 300 249 300 300 498 249 198
(100)  (100) (120) (100) (100) (60) (120) (151)

AT-1.5-k7-a 174 270 111 174 198 1500 123 114
(172)  (111) (270) (172) (151) (20) (243) (263)

AT-1.5-k7-b | 3000 3000 1500 3000 999 3000 1500 426
(10) (10) (20)  (10) (30) (10) (20) (70)

AT-1.5-k14-a 165 81 81 165 198 81 186 81
(181)  (370) (370) (181) (151) (370) (161) (370)

AT-1.5-k14-b 54 249 129 90 174 333 129 150
(555)  (120) (232) (333) (172) (90) (232) (200)

Al-3-k7-a 999 3000 3000 3000 3000 1500 3000 249
(30) (10) (10)  (10) (10) (20) (10)  (120)

AT-3-k7-b 186 999 426 426 186 600 375 426
(161)  (30) (70)  (70) (161) (50)  (80) (70)

Al-3-kl4-a 300 198 498 300 249 249 300 198
(100)  (151)  (60) (100) (120) (120) (100) (151)

AT-3-k14-b 498 81 333 498 87 999 426 69
(60)  (370)  (90)  (60) (344) (30) (70)  (434)

Table M.1: Batch sampling details. Entries are: #batches, (batch size) used.
Entries for p(k|Y) correspond to minimum #batches over k.
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