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ABSTRACT

In the analysis of spatial point patterns� it is generally assumed that the

underlying spatial point process is �isotropic�� i	e	� that all characteristics are ho


mogeneous with respect to direction	 However� this is known in many applications

not to be the case	 For example� the distribution of plant seedling locations often ex


hibits directional asymmetry� or �anisotropy�� due to factors such as prevailing wind

direction and systematic migratory behavior of seed carriers	 Failure to account for

such directional inhomogeneity can result in erroneous inferences	

A special type of spatial point process is considered� namely the �
dimensional

Poisson cluster process with bivariate normal o�spring dispersal BVNPCP�	 Esti


mation of the parameters of a BVNPCP the focus being the �cluster shape�scale

parameter�� the covariance matrix of the o�spring dispersal distribution� is par


ticularly challenging due to the substantial amount of latent data	 The o�spring

relationships� number of parents and locations of parents are all unknown	 Two

approaches for testing for and estimating anisotropy are developed and applied to

a collection of actual and simulated spatial point patterns	

The �rst approach considers the BVNPCP as a �nite mixture model and com


bines EM algorithm parameter estimates� computed separately for di�erent num


bers of clusters� in a Bayesian model averaging type scheme	 A �composite EM�

estimator of the cluster shape�scale parameter is thus constructed� along with an es


timated asymptotic variance computed from a combination of observed information

matrices	



�

In the second approach� a reversible jump Markov chain Monte Carlo RJM


CMC� technique for �
dimensional normal mixtures is developed	 RJMCMC ex


tends the traditional MCMC capabilities by providing for transitions between di�er


ent parameter spaces� which are needed in our situation due to the unknown number

of clusters	 A new convergence assessment method� applicable to any RJMCMC

situation in which distinct models can be identi�ed� is designed and theoretically

justi�ed	 Output analysis methods are also developed� including anisotropy test


ing�estimation� model checking and inference for number of clusters	 The RJMCMC

technique is �exible and has potential to apply to more complicated spatial point

processes� and also other mixture
related problems	
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ABSTRACT

In the analysis of spatial point patterns� it is generally assumed that the

underlying spatial point process is �isotropic�� i	e	� that all characteristics are ho


mogeneous with respect to direction	 However� this is known in many applications

not to be the case	 For example� the distribution of plant seedling locations often ex


hibits directional asymmetry� or �anisotropy�� due to factors such as prevailing wind

direction and systematic migratory behavior of seed carriers	 Failure to account for

such directional inhomogeneity can result in erroneous inferences	

A special type of spatial point process is considered� namely the �
dimensional

Poisson cluster process with bivariate normal o�spring dispersal BVNPCP�	 In this

process� �parent� events are assumed to be located uniformly in some region	 Each

parent event gives rise to a collection of �o�spring� events� displaced according to

a common bivariate normal distribution	 The resulting point pattern is taken to be

the collection all o�spring events� with no information about parents recorded	 If

the covariance matrix called the �cluster shape�scale parameter�� of the bivariate

normal distribution is a multiple of the identity matrix� then isotropy holds� with

clusters having a circular shape	 Otherwise� the process is anisotropic with elliptical

clusters	

Estimation of the parameters of a BVNPCP is particularly challenging due

to the substantial amount of latent data	 The o�spring relationships� number of

parents and locations of parents are all unknown	 In this thesis� two approaches for

testing for and estimating anisotropy are developed and applied to a collection of
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actual and simulated spatial point patterns	 The cluster shape�scale parameter is

re
parameterized in terms of anisotropy strength� anisotropy direction� and cluster

size to allow for more transparent interpretation of results	

The �rst approach considers the BVNPCP as a �nite mixture model and com


bines EM algorithm parameter estimates� computed separately for di�erent num


bers of clusters� in a Bayesian model averaging type scheme	 A �composite EM�

estimator of the cluster shape�scale parameter is thus constructed� along with an es


timated asymptotic variance computed from a combination of observed information

matrices	

In the second approach� a reversible jump Markov chain Monte Carlo RJM


CMC� technique for �
dimensional normal mixtures is developed	 RJMCMC ex


tends the traditional MCMC capabilities by providing for transitions between di�er


ent parameter spaces� which are needed in our situation due to the unknown number

of clusters	 A new convergence assessment method� applicable to any RJMCMC

situation in which distinct models can be identi�ed� is designed and theoretically

justi�ed	 A �model� in our case is a given number of clusters� in other words� the

number of components in a mixture	 Output analysis methods are also developed�

including anisotropy testing�estimation� model checking and inference for number

of clusters	 The RJMCMC technique is �exible and has potential to apply to more

complicated spatial point processes� and also other mixture
related problems	
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CHAPTER �

INTRODUCTION AND PRELIMINARIES

��� The Problem

Many naturally occurring phenomena give rise to data in the form of a set of

event locations� or a spatial point pattern	 Examples include the dispersal of trees

in a forest and the locations of nuclei of a patch of biological cells	 In the �eld of

spatial point pattern analysis� a pattern is typically described as random� regular�

or aggregated	 Aggregated patterns can arise from either some sort of clustering

mechanism or from environmental variation leading to high concentration of events

in certain areas	 Of particular interest in this thesis is a speci�c kind of process

de�ned formally in section �	�	�� which generates aggregated patterns in the plane

through a clustering mechanism	

As Ripley ����� asserts in his in�uential paper on modeling spatial point

patterns� in the theory of spatial point processes �one of the earliest and most

intensively studied classes of models is the class of cluster processes� p	 �����

the most important subclass of which is the Neyman�Scott process Neyman and

Scott� �����	 A Neyman
Scott process see section �	�	�� consists of two stages� a

set of parent events is distributed uniformly in a region� and o�spring events are

dispersed around the parents	 The resulting pattern is taken to be the collection

of all o�spring locations� i	e	� no information regarding parent events is recorded	

The parameters of such a process describe the average number of parents per unit

area� the distribution of the numbers of o�spring per parent� and the dispersal of



�

o�spring around their parents	

Despite the popularity of Neyman
Scott processes as models for point pat


terns� �little is known on the statistical estimation of �their� parameters in the pla


nar case� Stoyan� ����� p	 ���	 Estimation is particularly challenging because there

is a substantial amount of latent data underlying observed patterns� the number of

parents� locations of parents� and relationships between o�spring are all unknown	

Furthermore� all methods known to the author assume that the dispersal of o�spring

around parents is radially symmetric i	e	� isotropic�	 The assumption of isotropy

simpli�es the mathematics considerably but is unrealistic for many situations	

The aim of this thesis is to develop tests of isotropy for a special type of

Neyman
Scott process� and to estimate the parameters describing o�spring dis


persal� as well as some of the latent data� without assuming isotropy	 Two main

approaches are developed	 The �rst Chapter �� combines results from several di�er


ent EM algorithm runs� while the second Chapters � � �� involves a reversible jump

Markov chain Monte Carlo �RJMCMC� scheme	 Chapters � � � discuss necessary

preliminaries	 Results for real and simulated data sets are presented in Chapter ��

and a summary of new methods and scope for future research are given in Chapter �	

�	�	� Spatial Point Processes

Before presenting the speci�c model of interest� we de�ne some basic terminol


ogy of spatial point processes and patterns	 Diggle ����� provides a good overview

of spatial point pattern analysis	 A spatial point pattern is a �nite set of points

events� in a spatial domain A whose locations are modeled as random variables	

A spatial point pattern is regarded as a partial realization of a spatial point process

SPP�� which is a random mechanism for generating a countable set of events in A	
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The region A is taken to be a window of observation for our purposes� a �study

region� in ��� and not the entire domain of the process	

Let NB� denote the number of events in an arbitrary region B � A� jBj the
area of B� and dx an in�nitesimal region containing a point x � A	 The simplest

SPP to specify is a homogeneous Poisson process HPP�� in which the locations

of events are independently and identically distributed according to the uniform

distribution on A	

The intensity function ��� of a SPP is de�ned as follows�
�x� � lim

jdxj��

�
E �Ndx��

jdxj
�
	

The second�order intensity function ���� is de�ned similarly�
��x�y� � lim

jdxj�jdyj��

�
E �Ndx�Ndy��

jdxjjdyj
�
	

A minor variation of ���� is the covariance density


x�y� � ��x�y�� �x��y��

which can be interpreted as the covariance between event counts per unit area in

two in�nitesimal regions centered at x and y	

A process is called stationary if there are no underlying environmental factors

encouraging or discouraging the occurrence of events at particular locations� i	e	�

if all probabilistic statements about it in any region B � A are invariant under

arbitrary translations of B	 For a stationary SPP� �x� � � in which case � is

interpreted as the expected number of events per unit area�� and ��x�y� � ��z�

where z � x�y	 Stationarity is an important property of SPP�s that must hold for
many theoretical quantities to be well
de�ned� we assume throughout that all SPP�s

discussed are stationary	

Another property we will assume throughout is that of orderliness	 A SPP is



�

orderly if multiple coincident events cannot occur� i	e	�

lim
jdxj��

�
P Ndx� � ��

jdxj
�
� � �x � A�

which implies that

lim
jdxj��

�
E �Ndx��

P Ndx� � ��

�
� � �x � A

Diggle� �����	 We further assume� as in Diggle ������ that

lim
jdxj��

�
E �Ndx�Ndy��

P Ndx� � Ndy� � ��

�
� � �x�y � A	 �	��

A SPP is isotropic if symmetry exists in every way with regard to direction�

i	e	� if all probability statements about it in any region B � A are invariant under

arbitrary rotations of B	 If a SPP contains any violation of this condition� then it

is de�ned as anisotropic	 Note that under isotropy� ��z� further reduces to ��t�

where t � z�z	 For a HPP� ��x�y� � �� and thus 
x�y� � � �x�y � A	

Ripley�s K
function Ripley� ����� is important for describing interaction be


tween events at various ranges	 It is de�ned as follows�

Kt� �
�

�
E �� of other� events within t of a randomly chosen event� 	

For a HPP� Kt� � �t�	 Higher values indicate clustering� and lower values indicate

regularity	 Under isotropy� stationarity� orderliness and �	��� ��t� and Kt� have

a simple relationship Diggle� ����� p	 ����

��t� � ����t���
d

dt
Kt�	

Most methods in spatial point pattern analysis involve estimation of the in


tensity� second
order intensity� and�or K
function	 Thus it is useful in model �tting

to know the theoretical form of these quantities for di�erent candidate point process

models	

Finally� a spatial point pattern is represented as the event locations fx�� 	 	 	 �
xng� where n is the observed number of events in A	
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�	�	� The Poisson Cluster Process with Bivariate Nor

mal Displacement BVNPCP�

Spatial cluster processes have been developed in several di�erent forms Ney


man and Scott� ����� ����� Strauss� ����� Kelly and Ripley� ����� Ripley� �����

Diggle� ����� ����� �����	 Neyman and Scott ����� discuss several applications�

including spatial distribution of larvae on an experimental �eld and clustering of

galaxies	 All instances involving analysis assume isotropy of the o�spring dispersal

distribution	 We will study a process with o�spring dispersal determined by a com


mon bivariate normal distribution with arbitrary covariance matrix� thus allowing

for anisotropy	 First a more general cluster process� the Poisson cluster process� is

de�ned Neyman and Scott� ����� Diggle� ������

De�nition ����� A Poisson cluster process PCP� is given by the following � pos�

tulates�

PCP� Parent events form a HPP in �� with intensity ��

PCP� Each parent j produces a random number Sj of o�spring	 realized indepen�

dently and identically for each parent according to a probability distribution

fps� s � �� �� 	 	 	g�

PCP� The positions of the o�spring relative to their parents are independently and

identically distributed in �� according to a common bivariate p�d�f� h���

Note that a PCP is stationary� since the parent process is a HPP	 Our model

of interest is a special case of the PCP�

De�nition ����� A bivariate normal Poisson cluster process BVNPCP� is a PCP

with the following special distributions�
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� The cluster counts fSjg are distributed according to a common Poisson dis�

tribution with rate �

�� The o�spring dispersal distribution h�� is bivariate normal with mean zero

and positive de�nite covariance matrix ��

A realization of a BVNPCP is taken to be the collection of all o�spring events

in a region A � ��	 Perhaps an extra �Poisson� should be inserted into the name

since there are two Poisson distributions involved one of the parent process and

the other of the cluster counts�� but it is omitted for simplicity	

Of primary interest will be the estimation of �	 A BVNPCP with � �

��I� where I is the identity matrix and �� any positive constant� will produce

circular clusters� whereas an arbitrary BVNPCP will produce elliptical clusters	

The correspondence between components of � and the resulting cluster shape�scale

is developed in section �	�	�	 While the model of elliptically
shaped clusters may

not be general enough to convincingly represent a large class of natural processes�

it is a substantial generalization of the commonly used class of BVNPCP�s with

radially symmetric o�spring dispersal � � ��I� see� for example� Neyman and

Scott ������ Diggle ������ Lawson ����a��	

The bivariate normal component of the BVNPCP is barely� perhaps� math


ematically simple enough to make approaches such as maximum likelihood estima


tion and the EM algorithm analytically tractable	 It seems a natural starting point�

especially in light of the concept of geometric anistropy see section �	�	��	 The

RJMCMC approach see Chapters � � ��� on the other hand� appears to o�er the

exciting possibility of generalization to a much larger class of o�spring dispersal dis


tributions	 Hence the choice of the BVNPCP for analysis in this thesis� it is general
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enough to make an important addition to the class of useful point process models�

and simple enough to allow the comparison of di�erent approaches for analysis	

�	�	� Geometric Anisotropy

If a circle is �stretched�� the result is an ellipse the term �stretch� referring

to the multiplication of the coordinates of any axis by a constant c � ��	 For a

spatial point process� a similar phenomenon can exist in the form of a force along

an axis	 For example� the path of the sun may in�uence the locations of one plant

species relative to another through shading e�ects	 A process which results from

the introduction of such a axial force to an isotropic process� e�ectively changing

the scale of a particular axis� is called geometrically anisotropic	

Geometric anisotropy is a popular model for anisotropy in the related �eld

of geostatistics Ecker and Gelfand� ����� Zimmerman� ����� section ��	�	��	 The

correlation between observations taken at di�erent sites is taken to have elliptical

contours� due to some directional force for example� prevailing wind direction in

Zimmerman ������	 Although there are di�erences between the concept of geomet


ric anisotropy in spatial point pattern analysis and that in geostatistics� a precedent

seems to be in place for its use	

In spatial point process terminology� geometric anisotropy is de�ned as follows�

De�nition ����� A point process is geometrically anisotropic if the second�order

intensity function has elliptical contours	 i�e�	

��x�y� � ��

��
x� y��M��x� y�

�����
�	��

for some positive de�nite matrix M with jMj � ��
in which case we use the term geometric second
order intensity and write

��x�y� � �g��M�t�� where t �
�
x� y��M��x� y�

����
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The matrix M induces a Mahalanobis �non�Euclidean� distance measure� It is as�

sumed	 for identi�ability and without loss of generality	 to have a determinant equal

to unity�

Note that under isotropy� �	�� holds for M � I the identity matrix�� and the

contours are circular	

�	�	� Geometric Anisotropy of the BVNPCP

The form of the second
order intensity function for a general PCP and a

BVNPCP are established in Theorems �	�	� and �	�	�	 First two useful lemmas are

presented� and the form of the �rst
order� intensity function is derived	

Lemma ����� �Wald	s equation
 Let X��X�� 	 	 	 be i�i�d� random variables with

�nite mean� Let N be a non�negative integer�valued random variable independent

of fX��X�� 	 	 	g and with �nite mean� Then

E

�
NX
i��

Xi

�
� EN�E X��

Proof � See Grimmet and Stirzaker ����� p	 ����	

The following theorem is stated without proof in Diggle ����� p	 ����

Theorem ����� The intensity of a PCP is given by� � � ��

Proof � Consider a PCP observed in a �nite region A	 Let

np � �parents in A�

xij � jth location of o�spring of ith parent

x � location of arbitrary o�spring from arbitrary parent

B � �nite region in ��
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Note� the dependence of these quantities on A is suppressed in the notation�	

Then�

E �NB�� � lim
A���

E �NB��

� lim
A���

E

	
npX
i��

SiX
j��

�Bxij�




� lim
A���

�
Enp�E

	
SX
j��

�Bx�


�
by Lemma �	�	�� since np and

nPSi
j�� �Bxij�

o
are independent�

and
nPSi

j�� �Bxij�
o
are i	i	d	� i � �� 	 	 	 � np�

� lim
A���

fEnp�ES�P x � B�g

by Lemma �	�	�� since S and �Bx� are independent�

� lim
A���

f�jAjP x � B�g

� lim
A���


�jAj jBjjAj

�
boundary e�ects possibly disturbing P x � B� become negligible

for the �xed region B as A	 ��� x is an independent

displacement of a uniformly distributed quantity� and thus

marginally distributed uniformly�

� �jBj	
Hence � � �	 �

Lemma ����� Suppose f�� is a p�d�f� de�ned on �� and continuous everywhere�

Then	 for any �xed c � �� and D � ��	 there exists B �
 such that

�

jDj
Z
D

fu� c�du � B	

Proof � Since f�� is a p	d	f	� we have R�� fu�c�du � �	 Since f�� is continuous�
this clearly implies the existence of a constant B �
 such that fu�c� � B �u �



��

��	 Consequently�

�

jDj
Z
D

fu � c�du � �

jDj
Z
D

Bdu �
�

jDj jDjB � B	 �

The following theorem is stated without proof in Ripley ����� p	 ���� and

Diggle ����� p	 ����

Theorem ���� The second�order intensity function of a PCP with h�� continuous
is given by�

��x�y� � ��  �E fSS � ��gh�x� y�

where

h�x� y� �

Z
��

hx�hx� z�dx�

the p�d�f� of the vector di�erence between two o�spring from the same parent�

Proof � See Appendix A	�	

Geometric anisotropy of the BVNPCP is established by the following theorem�

Theorem ����� �Geometric anisotropy of BVNPCP
 The BVNPCP satis�es

geometric anisotropy with M � j�j� �
�� and

�g��M�t� � ��
�  ��

	
�

���j��j��� exp
�
� t�

�j�j ��

�

	

Proof � Let x and y represent locations of two arbitrary distinct� o�spring from

the same parent	 Since x�y s N���� and are independent� we have x � y s

N�� ���	 Also� since S s Poiss�� we have E�SS � ��� �   �� �  � �	

Thus� using Theorems �	�	� and �	�	�� we have

��x�y� � ��  �E�SS � ���h�x� y�

� ���  ��
�

�

���j��j��� exp
�
��
�
x� y�������x� y�

��
� ���  ��

	
�

���j��j��� exp
�
� t�

�j�j ��

�

where t �

�
x� y��M��x� y�

����
and M � j�j� �

��	

Finally� jMj � �� thus satisfying the de�nition of �g��M���	 �



��

Note that for the BVNPCP� �g��M�t� � �� and decreases exponentially to ��

the value for a HPP� in the limit as t	
	 In other words� the covariance density
is strictly positive� being highest at t � � and decreasing exponentially to zero with

the squared Mahalanobis distance between two locations	

So the anisotropy of a BVNPCP is completely determined by �	 The cluster

shape�scale is governed by the elliptical contours of the N���� density	 In order to

describe the cluster shape�scale in more useful terminology� we can re
parameterize

� in terms of an anisotropy parameterization	 First we de�ne the usual parameter


ization� which we shall call the regular parameterization�

De�nition ����� �regular parameterization of �
 Consider a BVNPCP with

cluster shapescale parameter �� Let x � x�� x��� be the location of an o�spring

relative to its parent� The regular parameterization of �	 � � ���� ���� ����	 is

de�ned as follows�

� � Varx� �

�� ��� ���

��� ���

��
where ��� � Varx��	 ��� � Varx��	 and ��� � Covx�� x���

De�nition ������ �anisotropy parameterization of �
 Consider a BVNPCP

with cluster shapescale parameter�� Let E��� be the ellipse
�
x����x � ��

��� ��
�
	

where x � �� and ��
�� � �� is the � � ��th quantile of the �� distribution with

� degrees of freedom� Let I��� be the interior of E���� Note that E��� describes

the elliptical contours of N����	 and that y s N���� � P y � I���� � � � �

Johnson and Wichern� ����� Result �	���

The anisotropy parameterization of �	 �� ����	 is de�ned as follows�


� The anisotropy strength	 �	 is de�ned as the ratio of the major semi�axis and

minor semi�axis of E���� �Note that �  ���



��

�� The anisotropy direction	 �	 is de�ned as the angle of inclination of the major

axis of E���	 which is the �smaller� angle between the major axis and the

positive x�axis and lies in
���

�
� �
�

�
�

�� The cluster size	 �	 is de�ned as the square root of the determinant of �	

which is equal to
AreaI����
��������� �

NOTE� �� ���� does not depend on �	 which is used only to demonstrate the mean�

ing of the magnitude of �� This particular choice for � is explained in the comments

following the proof of Fact 
�
�

�

For an isotropic BVNPCP with� � ��I� note that � � �� � � ��� and � is not

well
de�ned	 The irrelevance of � for isotropic BVNPCP�s and the constraint �  �
render the anisotropy parameterization unsuitable for isotropy testing	 However� it

is still quite useful for estimation and descriptive purposes� especially for BVNPCP�s

with clear violations of isotropy	

The mathematical correspondence between � and the anisotropy parameter


ization is established by the following�

Fact ������ Consider a BVNPCP with cluster shapescale parameter �� The two

parameterizations ���� ���� ���� and �� ����	 as de�ned in De�nitions 
�
�� and


�
�
�	 are related as follows�

� �

	
���  ���  ���� � ����

�  ������
���

���  ��� � ���� � �����  ������
���


���

� �

�����������
�� if ��� � � and ��� � ���

�
�
� if ��� � � and ��� � ���

arctan
�

�����
��������	����������
���������

�
� if ��� �� �

� �
�
������ � ����

����
and



��

��� � �

�
�

�
sin� � � cos� �

�
��� � �

�
�

�
cos� � � sin� �

�
��� � ��

�
�

�
� �

�
sin� cos �

Proof � First� � � ������� � ���
��
���
simply by de�nition	 Write ��� as

��� �

�� i�� i��

i�� i��

�� � �

������ � ����

�� ��� ����
���� ���

�� 	 �	��

Let x � x�� x��� � �� and consider the ellipse

E �
�
x����x � �

�
�
�
i��x

�
�  �i��x�x�  i��x

�
� � �

�
	 �	��

Now de�ne

a � major semi
axis of E

b � minor semi
axis of E

� � angle of inclination of major axis of E

Then E can also be written as Batschelet� ����� equation ��	�	���

E �

�
cos� �

a�
 
sin� �

b�

�
x��  � cos � sin �

�
�

a�
� �

b�

�
x�x� �

sin� �

a�
 
cos� �

b�

�
x�� � �

�
	 �	��

The relationship between a� b� �� and i��� i��� i��� can be determined by equat


ing the coe!cients in �	� and �	�	 The mapping a� b� �� �	 i��� i��� i��� is trivial�

and the form of i��� i��� i��� �	 a� b� �� is derived by Batschelet ����� section ��	���

a �

p
�h

i��  i�� � �i�� � i����  �i����
���
i���

b �

p
�h

i��  i��  �i�� � i����  �i����
���
i���



��

� �

�����������
�� if i�� � � and i�� � i��

�
�
� if i�� � � and i��  i��

arctan

�
��i��

i���i�����i���i����
�i����
���

�
� if i�� �� �

Finally� the result is obtained by using the de�nition � � a
b
and re
writing in

terms of ���� ���� ���� as determined by �	��	 �

Note that via simple substitution� the ellipse E can also be written in the

following equivalent form in terms of �� �����

E �

�
�

�
cos� � � sin� �

�
x��  � cos � sin�

�
�

�
� �

�
x�x� �

�

�
sin� � � cos� �

�
x�� � �

�
�
�
x�M��x � �

�
where jMj � � and M involves only � and ��

thus justifying the representation chosen for � in De�nition �	�	��	

�	�	� Potential Applications in Ecology

Wright ����� introduced the idea of a genetic neighborhood in population

ecology as the �area from which the parents of central individuals may be treated

as if drawn at random� Crawford� ����� p	 ����	 See Wright ����� for a detailed

explanation of the theory	 The dispersal of pollen and seeds combined� from parent

plants is assumed to follow a bivariate normal distribution with covariance matrix

� � ��nbdI� where �nbd is estimated from measurements of pollen and seed dispersal

distances� ignoring direction	 The genetic neighborhood is then de�ned as the circle

of radius ��nbd note that approximately ��	�� of observations from N�� ��nbdI�

will lie in this circle�	 Many important ecological inferences are based on the con


cept of genetic neighborhoods	 For example� genetic di�erentiation between two



��

populations is considered a function of the number of neighborhood diameters that

separate them in space	

However� strong directionality of pollen and seed dispersal has been observed

in nature	 Directional migration patterns are quite common and are important in

a�ecting gene �ow� extinction and recolonization dynamics in natural populations	

Crawford ����� p	 ���� expresses doubts about the neighborhood model�

The basic model involves a number of assumptions that are unlikely to
be true in nature	 The most important are that dispersal distributions
are normal� that these distributions have zero means and that they ade

quately re�ect the form of gene dispersal between parents and o�spring	

He also states that the most frequently encountered deviation from the assumed

dispersal distribution is that of leptokurtosis� meaning an extended tail and excess

of observations near the mean	 Skewed dispersal distributions are often observed�

directional behavior of pollinators and prevailing wind direction are cited as con


tributors to this e�ect	

Many adjustments for the e�ects of leptokurtosis have been proposed Craw


ford� ������ but all involve only adjustment of �nbd� leaving all other assumptions

intact most notably the assumption of radial symmetry�	 Methods to characterize

the directionality of dispersal distributions could potentially produce an improved

model for the genetic neighborhood	

��� Description of Datasets Used

One observed spatial point pattern and and a battery of twelve simulated

patterns are analyzed in Chapter � using the techniques developed in Chapters � �

�	 In this section we describe the patterns and the reasons for our choices	



��

�	�	� Redwood Seedling Locations

Strauss ����� studied the location of Redwood seedlings in an experimental

plot	 He states p	 ���� �it was felt that the seedlings would be scattered fairly

randomly� except that a number of tight clusters would form around some of the

redwood tree stumps present in the plot	� Figure �	� shows the locations of the

seedlings with no information about the stumps�	 The diagonal line represents a

discontinuity in the soil� below which very few Redwood stumps were found	 Thus

the clustering behavior is expected to be quite di�erent in the two regions	 The

portion used for analysis in this thesis is indicated by a solid boundary and will

henceforth be referred to as the �Redwood data	� For convenience in analysis� the

coordinate scale is chosen to produce a total area of �	

Ripley ����� extracts a square region marked by dashed lines in Figure �	��

mainly within the area of supposed clustering� citing computational convenience as

his justi�cation	 He and other authors Diggle� ����� Lawson� ����� have analyzed

this square region as an isotropic PCP� leading to varied conclusions see section �	��	

The supposed clusters in the Redwood plot appear to exhibit strong direction


ality� suggesting a common northeast
southwest orientation	 No reported analyses

of this pattern account for or assess this directionality	 Although there is no ev


idence suggesting that elliptical cluster shapes are reasonable� a visual inspection

warrants the possibility	 The Redwood data is thus analyzed as a BVNPCP	

�	�	� Simulated Patterns

To enable a more thorough study of the performance of the methods devel


oped� twelve simulated spatial point patterns are used for analysis	 The number of

such patterns is limited by constraints on computation time	 Patterns are generated
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Figure �	�� Location of Redwood seedlings in an experimental plot	 Regions are
marked according to use in this thesis solid� and in other papers dashed and
dotted�	
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in the unit square according to a BVNPCP� conditional on number of clusters k�

and total number of o�spring n� set to ����� except that placement of parents is

restricted to ��	���� �	����� ��	���� �	����	 Note� terminology for such conditioning
is given by De�nition �	�	�� and the equivalent speci�cation given by De�nition �	�	�

is used for the actual simulation�	 The restriction on parent cluster center� place


ment is used to reduce edge e�ects� since the robustness of methods to boundary

e�ects is not studied	

Three factors are varied to generate the patterns� � anisotropy strength� set

to �� �	� or ��� k number of clusters� set to � or ��� and � cluster size� set to

	��� for k � � and 	���� for k � ���	 Varying � allows the study of di�erent de


grees of anisotropy� while varying k and � allows the analysis of more and smaller

clusters vs	 fewer and larger clusters	 The parameter � anisotropy direction� is

set to �
� � ��

� for all anisotropic patterns	 The use of a common value simpli�es

interpretation of results across patterns	 Some methods we will develop later in the

thesis analyze the variance di�erence ��� � ��� and covariance ��� separately	 This

particular choice of � gives comparable although not necessarily identical� impor


tance to each in detecting departures from isotropy	 Two replications of each factor

combination are generated	 To avoid selection bias� the �rst two such replications

of each combination were accepted� regardless of the apparent adherence or lack

thereof� to model parameters	

The naming convention for the simulated BVNPCP realizations identify whether

the underlying model is isotropic �I�� or anisotropic �AI��� the value of � in case

of anisotropy ��	�� or ����� the value of k �k�� or �k����� and the replication �a�

or �b��	 Table �	� shows the values of relevant quantities for the twelve simulated

patterns� and Figures �	� � �	� show plots of the patterns	



��

Name � k � ��� ��� ���

I
k�
a � � �	��� �	��� �	��� �

I
k�
b � � �	��� �	��� �	��� �

I
k��
a � �� �	���� �	���� �	���� �

I
k��
b � �� �	���� �	���� �	���� �

AI
�	�
k�
a �	� � �	��� �	������ �	������ �	������

AI
�	�
k�
b �	� � �	��� �	������ �	������ �	������

AI
�	�
k��
a �	� �� �	���� �	������ �	������ �	�������

AI
�	�
k��
b �	� �� �	���� �	������ �	������ �	�������

AI
�
k�
a � � �	��� �	��� �	��� �	������

AI
�
k�
b � � �	��� �	��� �	��� �	������

AI
�
k��
a � �� �	���� �	���� �	���� �	������

AI
�
k��
b � �� �	���� �	���� �	���� �	������

Table �	�� Simulated point patterns� values of BVNPCP pa

rameters and realized latent data to � signi�cant digits�	 For
all patterns� n � ��� and � � �

� 	
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I-k7-a: offspring locations
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I-k7-b: offspring locations
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Figure �	�� Simulated I
k� patterns	
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I-k14-a: offspring locations
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Figure �	�� Simulated I
k�� patterns	
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AI-1.5-k7-a: offspring locations
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Figure �	�� Simulated AI
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k� patterns	
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AI-1.5-k14-a: offspring locations
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Figure �	�� Simulated AI
�
k� patterns	
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k�� patterns	
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��� Previous Approaches

To the author�s knowledge� there are currently no other methods available to

test isotropy of the o�spring dispersal distribution of a PCP	 Estimation even for

isotropic PCP�s has been a notoriously di!cult problem with no clearly adequate

solution� mostly because of the substantial amount of latent data especially the

unknown number of parents occurring in the region�	

Furthermore� there is relatively little consideration of anisotropy at all in the

spatial point pattern literature	 There are several useful directional extensions of

commonly used descriptive statistics of spatial point processes	 However� in rela


tively few cases are the theoretical values known for commonly used models� and

none have known distributions or standard error computations	 Ohser and Stoyan

����� de�ne a version of theK
function which tallies the occurrence of other events

within a sector whose origin is at an event	 Stoyan and Stoyan ����� derive an

edge
corrected i	e	� including a correction for boundary e�ects� estimator for a

generalized version which counts the occurrence of events in an arbitrarily shaped

region around an event	 Stoyan ����� develops an estimator b��r� ��� a kernel es

timator of the second
order intensity as a function of distance r and direction �	

K"onig and Schmidt ����� construct an estimator of the distribution of direction

between one event and another arbitrary event located with a given distance range

from the �rst	 Mugglestone and Renshaw ����a�b� use spectral analysis to char


acterize anisotropic structure in a spatial pattern	 Applications of these descriptive

methods have been found mostly in the stereology and microscopy literature see

Stoyan and Bene#s� ����� Bene#s et al	� ����� Carvajal
Gonzalez et al	� ����� K"onig



��

and Ohser� ����� Cruz
Orive et al	� �����	

Strauss ����� developed a model for �xed
range interactions in spatial point

processes in which events are allowed to encourage or discourage the occurrence

of other events within a certain �xed radius�	 He �t this model to the Redwood

data using the same region as in this thesis� and concluded there was substantial

evidence of clustering	 The interpretation of his �clustering tendency� parameter

in relation to quantities considered in this thesis is unclear	

�	�	� Least Squares Estimation for Isotropic PCP�s

A popular method of parameter estimation for spatial point patterns is that

of least�squares estimation Diggle� ����� Chapter ��	 The essential idea is as fol


lows� First a measure of some property of the point process usually a function

of distance t� is chosen	 Examples include Ripley�s Kt�� the distribution function

of nearest
neighbor distances F t��� the distribution function of point
to
nearest


event distances Gt��� and scaled versions of ��t� Baudin� ����� Stoyan� �����	

Say a measure Mt� is chosen	 The theoretical value Mt� �� for di�erent values of

the unknown parameters �� is compared to an estimate cMt� from the data� for

various � and t	 A discrepancy function D�� is de�ned as

D�� �

Z t�

�

hncMt�oc � fMt� ��gci� dt
with �tuning constants� t� and c	 Then � is estimated as the value $� which minimizes

D��	 Diggle ����� uses a quasi
Newton optimization procedure	 A drawback of

the method is the di!culty in choosing proper values for the tuning constants	

Ripley ����� carries out a similar procedure with Kt� for Strauss�s �xed


range interaction model using the square region from the lower
lefthand corner of

the Redwood plot in Figure �	�� scaled to give an area of �� and� instead of using least



��

squares� tries a range of di�erent parameter values and concludes that none provides

an adequate �t	 Diggle ����� models the same region as a BVNPCP with � � ��I	

He uses Kt� with t� � �	�� and c � �	�� to yield $�� $�� � ��	�� �	����� implying

surprisingly� the estimated presence of ��	� clusters for only �� observations	

�	�	� MCMC Analysis

Granville and Smith ����� consider a variant of the BVNPCP in which the

cluster count distribution is geometric rather than Poisson	 The cluster shape�scale

parameter � is kept arbitrary	 They develop a dimension
changing MCMC sam


pler based on a spatial birth
and
death process Geyer and M%ller� ����� capable

of modeling the number of clusters	 However� they do not perform any convergence

assessment	 A similar method is suggested� although not developed� by Baddeley

and van Lieshout ����� for general PCP�s	 Lawson ����a� develops a similar

MCMC sampler for two classes of isotropic PCP�s� simply mentioning that conver


gence assessment method is �based on Q
Q plots of the marginal distributions �of

the parameters�	� Lawson ����b� models a variant of the isotropic BVNPCP in

which the cluster shape�scale parameter is allowed to vary as a function of clus


ter center location� using a similar MCMC sampler and convergence assessment

method	 In all of these cases� output analysis is essentially restricted to the display

of the posterior density estimate and reported modal values� and no details are given

to allow one to reproduce the sampling algorithm	 It is not clear whether any of

the chains have satisfactory mixing properties� as rigorous convergence assessment

is not performed	

Lawson ����� mentions in a brief discussion contribution that he models the

same Redwood data set used in Ripley ����� and Diggle ����� as a PCP with



��

a �&nearest parent� approximation to h��� not de�ned�� using a Gibbs sampler
not explained� and Q
Q plots to assess convergence	 He reports modal estimates

of k � �� clusters and �� � �	����� which is not de�ned and may or may not

correspond to Diggle�s ��	

These MCMC methods� most of which are based on the spatial birth
and


death process� can be considered precursors to the more versatile reversible jump

Markov chain Monte Carlo technique discussed in Chapters � � �� developed by

Green �����	



��

CHAPTER �

ATTEMPTS AT MAXIMUM LIKELIHOOD ESTIMATION

Consider the BVNPCP observed in a region A � ��	 The parameters of this

process can be represented as see De�nitions �	�	�� �	�	� and �	�	��

' � f�� ��g � f�� � ���� ���� ���g	
The observed data are

Y � flocations of o�spring in Ag � y�� 	 	 	 �yn��� where yi � yi�� yi���	 �	��

The latent data can be expressed as follows�

k � �parents in A� �	��

� � fparent locationsg � ��� 	 	 	 ��k�
�� where �i � �i�� �i��

� �	��

Z � f�allocations�g �

������
z�� � � � z�k
			

	 	 	
			

zn� � � � znk

������
where zji �

��� �� if o�spring j belongs to parent i

�� otherwise
�	��

A CAUTIONARY NOTE� The above de�nitions are not entirely self
consistent

because it is possible for parents in A to produce o�spring outside A� and for parents

outside A to produce o�spring inside A	 The author has not found a satisfactory

remedy to account for this� and thus we will proceed as though the entire BVNPCP

occurs within A	 Estimation of intensity is not of concern in the thesis	 As long

as the study region is chosen carefully so that there is not an excess of clusters

occurring on the boundary� this simplifying assumption is expected to have little



��

impact on the results	 The Redwood pattern appears to meet this condition� and for

the simulated patterns� parents were generated in an interior region encompassing

about ��� of the area�	 Further research is needed to adequately account for cases

in which a signi�cant number of clusters occur on the boundary of the study region	

The latent data component Z can also be referred to as �cluster memberships�

or �parentage identi�ers	� The cluster counts are represented as the column sums

of Z�

s � fcluster countsg � S�� 	 	 	 � Sk��� where Si �
Pn

j�� zji	

Note that the �sample size� n� the total number of o�spring�� is random	

However� we proceed as is standard in statistical inference for spatial point processes

and condition on the observed sample size see e	g	 Ripley ����� ����� ������ Diggle

������ Baddeley and M%ller ������	

For the rest of this chapter and also for use throughout the thesis�� de�ne the

generic notation p�� to denote a likelihood� p	d	f	 or p	m	f	� the meaning in each
case being de�ned by the context	 Also de�ne the notation a s b to denote that

a is distributed according to the b distribution	 Let the observed
data likelihood

be represented as pYj'� n�	 It is possible to express this likelihood in closed form
by writing the complete
data likelihood pY�Z��� kj'� n� and integrating over the
latent data	 We can write the complete
data likelihood as�

pY�Z��� kj'� n� � pYjZ��� k�'� n�pZj�� s� k�'� n�p�� sjk�'� n�pkj'� n�	
�	��

At this point a useful lemma is presented�

Lemma ��� Let X�� 	 	 	 �Xm be random variables	 with X � X�� 	 	 	 �Xm��� The

following two statements are equivalent�

X�� 	 	 	 �Xm are independent and identically distributed as Poiss�� �	��



��

and
mX
i��

Xi s Poissm�� and X

�����
�

mX
i��

Xi � n

�
sMult

�
n�
�

m
�

�
�	��

Proof �

�	�� � �	���

Assume �	��	 Then by Theorem �	� of Taylor and Karlin ������ we have
mX
i��

Xi s Poissm��	

Also�

p

�
X

�����
mX
i��

Xi � n

�
�
pX� n�

pn�
�

Qm
i��

�Xi exp����
Xih

�m��n exp��m��
n

i � � n

X� � � �Xm

��
�

m

�n
�

and thus �	�� holds	

�	�� � �	���

Assume �	��	 Then

pX� � p

�
X�

mX
i��

Xi

�

� p

�
X

�����
mX
i��

Xi � n

�
P

�
mX
i��

Xi � n

�

�

�
n

X� � � �Xm

��
�

m

�n m��n exp�m��

n(

�

mY
i��

�Xi exp���
Xi(

Thus X�� 	 	 	 �Xm are independent and identically distributed as Poiss��	 �

Each factor on the right
hand
side of �	�� is derived in what follows	 First

note that

pkj'� n� � pnjk�'�pkj'�
pnj'� 	 �	��

Now njfk�'g s Poissk� by Lemma �	�� and kj' s Poiss�jAj� Diggle� �����
section �	��� and so we have

pnjk�'� � k�
n exp�k�
n(

pkj'� � �jAj�
k exp��jAj�
k(

	



��

The denominator of �	�� is computed as�

pnj'� � P

�
kX
i��

Si � n

�����'
�

�
�X
q��

P

�
qX
i��

Si � n

����� k � q�'

�
P k � qj'�

�

�
n exp f� ��� exp��� �jAjg

n(

�
�

�X
q��

qn
�
��jAj exp���q expf��jAj exp��g

q(

�
�

�
n exp f� ��� exp��� �jAjg

n(

�
E Xn�

where X s Poiss �jAj exp���

�

�
n exp f� ��� exp��� �jAjg

n(

� nX
j��

an�j ��jAj exp���j

where an�j �

��� �� if j � � or j � n

jan���j�  an���j��� otherwise�

where the last equality follows from an induction argument shown in Appendix A	��	

Next observe that ��� 	 	 	 ��k�jfk�'� ng are independent and distributed uni

formly on A� and sjfk�'� ng s Mult �n� �

k
�
�
by Lemma �	��� and � and s are

independent� so that

p�� sjk�'� n� � �

jAjk
�

n

S� � � �Sk

�
�

kn
	 �	��

Given the o�spring counts� all possible allocations satisfying the o�spring

counts are clearly equally likely marginally� not taking into account the o�spring

locations�	 Denote the set of all possible allocations as )s�	 The cardinality of

)s� is given by

�)s�� �

�
n

S� � � �Sk

�
� �	���

and so

pZj�� s� k�'� n� � ��
n

S� ���Sk
� 	 �	���



��

Finally� since fy�� 	 	 	 �yng are independent� we have

pYjZ��� k�'� n� �

kY
i��

nY
j��

�fyj��i����
Zji �	���

where fx������� denotes the density of N������	

Now that the form of the complete
data likelihood has been determined� it

can be integrated to produce the observed
data likelihood�

pyj'� n� �

Z
� � �
Z

pY�Z��� kj'� n� d� dZ dk

�
�X
k��

X
s��n�k�

X
Z���s�

ZZ
A

� � �
ZZ

A

pY�Z��� kj'� n� d� �	���

where *nk� � all possible values of s given k and n �	���

and )s� is as de�ned in �	���	

The integral over � in �	��� can be reduced shown in Appendix A	�� to a

product of terms of the form cP X � A�� where c is a simple algebraic expression

andX has a bivariate normal distribution with easily computable parameters	 Thus�

the integral can be calculated numerically using readily available techniques	 For

example� if A is a square region� then the integral is calculated by the function

pmvnorm in S
Plus version �	� for Windows Mathsoft� Inc	�	

The summation over k in �	��� can be justi�ably truncated� for example at

n otherwise it would not make sense to model the data as a cluster process in the

�rst place�	 This reduces the observed
data likelihood to the summation of a �nite

number of computable terms� which can thus be maximized in principle� at least�

by an optimization procedure such as the Nelder
Mead simplex method see Nelder

and Mead ������ Olsson and Nelson ����� and Press� Flannery� Teukolsky� and

Vetterling ����� section ��	���	

The summations over s and Z� however� pose serious problems for even mo


derately
sized data sets	 The number of terms grows astronomically with n	 The



��

cardinality of *nk� is di!cult to calculate� but it can be shown by a simple combi


natorial argument that the number of ways to choose a collection of non
zero counts

is
�
n��
k��
�
� and so � *nk�� �

�
n��
k��
�
	 Expressions describing the exact number of such

terms are unwieldy� but it will su!ce to demonstrate that for k � � and n odd� we

have X
s��n���

X
Z���s�

� � �n��	

This result follows from the fact that there are �n ways to allocate n o�spring to �

ordered clusters� and each such possibility has a redundant duplicate for n odd� at

least� since order should not be counted	 Thus� it would appear that computation

of even one likelihood value using a truncation of k� for a moderately
sized data

set is not possible anytime in this millenium	

Obviously some allocations are highly unlikely and could be justi�ably dis


carded	 However� determining which allocations to discard would require a separate

analysis altogether	 If such an e�ort is to be undertaken� there are more suitable

methods to consider� most notably the EM algorithm and Markov chain Monte

Carlo	

For illustrative purposes� we implement a Nelder
Mead simplex NMS� algo


rithm to �nd a local maximum of the observed
data likelihood �	��� for a very

simple pattern� shown in Figure �	�	 This pattern is a realization of a BVNPCP

on the unit square conditional on the number of parent events� parent locations�

and cluster counts	 The true values of the parameters and other quantities used to

create the pattern are� n � ��� k � �� S� � �� S� � �� � � �� � � 	����� � � �
� �

�� � 	��� 	���
�� and �� � 	��� 	���

�	

Following the guidelines of Olsson and Nelson ����� for bounded parameters�

we transform ' � f�� � ���� ���� ���g to flog �� log � log ���� log ���� �z����g� where
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Small test pattern: offspring locations

o

o

o

Figure �	�� Small test pattern to demonstrate Nelder
Mead simplexMLE procedure	

��� is the correlation and z���� is de�ned in De�nition �	�	�� for use in the actual

algorithm	 The starting simplex shown in Table �	�� in a more directly interpretable

parameterization� is chosen to be very close to the true value of the parameter vector

to represent a �best case� scenario�	 Only the values f�� �� �� �g are used for k in
each likelihood computation	 The clusters in the test pattern Figure �	�� were

intentionally located far from the boundary so that the term
Qk

i�� P xi � A��	 in

�	��� see equation A	�� in Appendix A	�� is extremely close to � and need not

be computed at each iteration	

The NMS algorithm was run until the relative di�erence between likelihood

values at successive iterations was less than �	���� i	e	� with a fractional tolerance

of �	�����	 The simplex converged in �� iterations and required ��	�� hours of

computation time	 Virtually all of the compuatation time was spent in calculation

of the likelihood	 Table �	� shows the resulting parameter estimates� along with



��

�  ��� ��� ���

� � �	��� �	��� �	��

� � �	��� �	��� �	��

� � �	��� �	��� �	��

� � �	��� �	��� �	��

� � �	��� �	��� �	��

� � �	��� �	��� �	��

Table �	�� Starting simplex
used in NMS algorithm for
small test pattern	

true values and also values computed separately using the true allocations Z and

the usual sample correlation coe!cient and sample variance	 The source code was

written in C  � and compiled and run using the same type of computer as discussed

at the end of section �	�	

�  ��� ��� ���

NMS �	����� �	����� �	������ �	������ �	������

Truth k ��� S� � S� ��� �	���� �	���� �	�

Estimates given Z �	������ �	������ �	������

Table �	�� Parameter estimates from NMS algorithm implemented for small test
pattern� along with true values and estimates computed using knowledge of Z	

The NMS estimates of ���� ��� and ��� are very close to the estimates obtained

with knowledge of Z	 This is not too surprising since the pattern has clear structure�



��

and the NMS starting values are close to the true values	 Experimentation with

other starting simplex values suggests that the algorithm converges to many di�erent

local maxima� and many more iterations of the algorithm are usually required	



��

CHAPTER �

COMPOSITE EM ANALYSIS

��� Mixture Model Speci�cation of the BVN�
PCP

De�ne a conditional version of the bivariate normal Poisson cluster process

see De�nition �	�	�� as follows�

De�nition ����� �BVNPCPA� k� n� 
 A BVNPCPA� k� n� with parameter �

is de�ned as a BVNPCP with cluster shapescale parameter � occurring entirely

within a region A	 conditional on the realized values of the number of clusters k�

and total number of o�spring n��

Theorem ����� The BVNPCPA� k� n� is completely determined by the following

three postulates�

C� The k parent events are independently distributed uniformly on A	 i�e�	

��� 	 	 	 ��k s UA� and are independent	

C� Each parent j produces a random number Sj of o�spring	 where

S�� 	 	 	 � Sk sMult

�
n�
�

k
�

�
	

C� The positions of the o�spring relative to their parents are independently and

identically distributed as N����	 conditional on being con�ned to A�

Proof � C� follows from De�nition �	�	� and the de�nition of a HPP see postulate

PP� in section �	� of Diggle ������	 C� follows from De�nition �	�	�� and C�

follows from Lemma �	�	 �



��

Note that the parameters � and  of the BVNPCP become irrelevant and

can therefore be treated as absent� in the BVNPCPA� k� n� 	 Next de�ne the

mixture model speci�cation of the BVNPCPA� k� n� terminology which is justi�ed

by Theorem �	�	�� as follows�

De�nition ����� �mixture model speci�cation of BVNPCPA� k� n� 
 The mix


ture model speci�cation of the BVNPCPA� k� n� is de�ned by the following three

postulates�

MM� k parent events �also called components� are independently distributed uni�

formly on A	 with locations given by

��� 	 	 	 ��k
i�i�d�
s UA�	

MM� Let Z be de�ned as in �	�� and zj denote the jth row of Z� De�ne the

notation �zj � q� to represent

zji �

��� �� if i � q

�� otherwise	

Allocations are determined independently as

z�� 	 	 	 � zn
i�i�d�
s Mult

�
��
�

k
�

�
�

i�e�	

z�� 	 	 	 � zn are independent with P zj � q� �
�

k
�q � f�� 	 	 	 � kg	

MM� The positions of the o�spring relative to their parents �parentage being de�

termined by Z� are independently and identically distributed as N����	 con�

ditional on being con�ned to A�

Theorem ����� The BVNPCPA� k� n� and the mixture model speci�cation of the

BVNPCPA� k� n� �De�nitions �	�	� and �	�	�� are equivalent�



��

Proof � Let A� k� and n be given	 Both speci�cations possess the same parameter

�� with the same meaning	 The random quantities �� Z and Y completely de


termine either speci�cation� so it will su!ce to prove that their joint distribution

is equivalent for the two speci�cations	 By de�nition� Z and � are independent of

each other and of ��� and the distributions of � and Yjf��Z��g the same the
latter given by �	����� for both speci�cations	 Thus all that remains is to establish

agreement on the distribution of Z	 Using notation developed in De�nition �	�	��

we have for the mixture model speci�cation

pZ� �

nY
j��

P zj � qj� �
�

kn

for any q�� 	 	 	 � qn� satisfying qj � f�� 	 	 	 � kg for each j � f�� 	 	 	 � kg�

i	e	� for any Z	

For the BVNPCPA� k� n� we have

pZ� � pZ� S�� 	 	 	 � Sk�

� pZjS�� 	 	 	 � Sk�pS�� 	 	 	 � Sk�

�
��
n

S����Sk
�� n

S� � � �Sk

�
�

kn

�
�

kn
�

and thus the distributions of Z are equivalent� completing the proof	 �

Thus the term �BVNPCPA� k� n�� will be used� and terminology for mixture

models e	g	 �components� and �allocations�� will be used when appropriate	

NOTE� Observe that the o�spring dispersal distribution of the BVNPCPA� k� n� is

technically a truncated bivariate normal� with the truncation depending on �	 At


tempts to account for this would render the model intractable for the types of

analyses to be developed	 Thus� proceeding as explained in the cautionary note



��

on page ��� we ignore the truncation and model a common bivariate normal o�


spring dispersal distribution	 As discussed there� the e�ect of this simpli�cation is

expected to be minor� in light of careful choice of data sets used for analysis	

Now we again turn our attention to the problem of estimating � for a BVN


PCP observed on a region A	 Likelihood forms relevant for analysis are derived in

section �	�	 Sections �	� and �	� describe estimation of� for a BVNPCPA� k� n� using

the EM algorithm	 In section �	�� a new technique is developed to combine �

estimates from several di�erent BVNPCPA� k� n� �s to arrive at a composite EM

estimate of �� along with an associated variance estimate	 First� the likelihoods

associated with the technique are developed	

��� Likelihoods Associated with Mixture Mod�
els

Consider the BVNPCPA� k� n� developed in section �	�	 We proceed as is

standard in the analysis of mixture models and treat � as an unknown parameter

instead of a random quantity	 The parameters to be estimated are thus � and ��

where � is treated as a nuisance parameter	 Sometimes a mixture model analysis

also involves estimation of mixing proportions� but in our case the mixing propor


tions are determined by the BVNPCPA� k� n� model assumptions to be equal with

value �
k
� a result of the common Poisson distribution of cluster counts�	 The nota


tion to follow represents conditioning on k but suppresses dependence on n and A	

The distribution of the observed data Y given the parameters and latent data is

called the classi�cation likelihood and is given by

p Y jk�����Z� �
nY
j��

f
�
yjj�zj ��

�



��

�
nY
j��

kY
i��

�fyjj�i����
zji �	��

where f�j�i��� denotes the density of N�i���	

The distribution of the observed and latent data Y and Z� given the param


eters is called the complete�data likelihood and is given as

p Y�Z jk����� � p Y jk�����Z� p Z jk�����

�
�

kn

nY
j��

kY
i��

�fyjj�i����
zji �	��

where f�j�i��� denotes the density of N�i���	

Finally� the marginal distribution of the observed data only given the param


eters is called the mixture likelihood� or observed�data likelihood� and is given by

p Y jk����� �
nY
j��

p yj jk�����

�

nY
j��

�Z
p yj� zj jk����� dzj

�

�
nY
j��

�Z
p yj jk����� p zj jk � dzj

�

�
nY
j��

	
kX
i��

p yj jk����� zj � i�P zj � i jk �



�
nY
j��

	
�

k

kX
i��

fyjj�i���




�
�

kn

nY
j��

kX
i��

fyjj�i��� �	��

where f�j�i��� denotes the density of N�i���	
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��� An EM Algorithm Clustering Approach for
Fixed Number of Clusters

The EM algorithm Dempster� Laird� and Rubin� ����� is a useful approach

to maximum likelihood estimation in the presence of missing latent� data	 Unfor


tunately� the EM algorithm for normal mixture models McLachlan and Basford�

����� cannot be used directly to estimate the parameters of a BVNPCP because

the dimension of the parameter space varies with the unknown realized value of k

number of clusters�	 However� the parameters of a BVNPCPA� k� n� can be esti


mated	 Then parameter estimates and associated variance estimates for di�erent k

can be combined� using estimated probabilities that each k is the truth� to form a

composite EM estimate and associated variance estimate of the parameters of the

underlying BVNPCP	 In this section we describe the EM algorithm approach for

�xed k	 The asymptotic covariance of the estimators is derived in section �	�� and

the technique to combine estimates is developed in section �	�	

Let the notation L ��X� denote the log
likelihood function for parameters �

and data observed and�or latent� X	 The EM algorithm is a technique to utilize

the complete
data likelihood to �nd a solution to the equation

�

� ����
L ����Y� k� � �� �	��

thus obtaining a local maximum of the observed
data mixture� likelihood under

mild regularity conditions� which are satis�ed in our case� see McLachlan and Bas


ford ����� section �	��� and for a more general discussion of convergence properties�

Wu ������	 The approach is usually applied when the form of the observed
data

likelihood is intractable� in our case� it is easy to express but di!cult to maximize

by other techniques	 McLachlan and Basford ����� section �	�� discuss drawbacks

of other methods such as Newton
Raphson	 The solution to �	�� is not necessarily



��

the maximum likelihood estimate MLE�	 However� in the case of normal mixture

models with common covariance matrix our situation�� the MLE exists and is

strongly consistent i	e	� converges to the true value almost surely with increasing

sample size� McLachlan and Basford� ����� section �	��	 Fraley and Raftery �����

promote a method using agglomerative hierarchical clustering� which we describe

later in this section� to produce good starting values for the EM algorithm which

improve the chances of the solution to �	�� providing a global maximum	 Perhaps

a more reliable strategy would be to try many di�erent starting values and compare

the mixture likelihood values since its closed form is available in our case� of the so


lutions� but construction of a good battery of starting values is a di!cult endeavor	

We choose the approach of Fraley and Raftery �����	 Regardless� Lehmann �����

chapter �� establishes that many desirable properties such as asymptotic e!ciency�

hold for any solution to �	�� under mild regularity conditions� which are not rigor


ously veri�ed in this thesis but are suspected to hold	 Fraley and Raftery ����� and

other authors treat the solution to �	�� as an MLE� and we follow this precedent	

The EM algorithm consists of two steps� the E�step and M�step	 First the

algorithm is initialized with starting values for the latent data in our case� Z�	 In

the M
step� the complete
data log
likelihood L ����Y�Z� k� is maximized over the

parameters ���� conditional on the current values of the latent data	 In the E
step�

the expectation of L ����Y�Z� k� over the latent data is computed� conditional

on the current values of the parameters	 The M
step and E
step are alternated

repeatedly until the value of L ����Y�Z� k� evaluated at the estimated parame


ter values and latent data values� converges� as determined by relative di�erences

between iterations	

Starting values for the EM algorithm are obtained as suggested in Fraley and



��

Raftery ����� via an agglomerative hierarchical clustering technique� a classi�ca


tion analysis method see Gordon ����� section �	�	���	 The goal is to determine

an optimal set of allocations Z �optimal� in the sense that the classi�cation like


lihood is maximized over a restricted but specially chosen subspace of the latent

data domain�	 Estimators of � and � which are functions of Z are constructed to

maximize the classi�cation likelihood conditional on Z	 For computational reasons�

not all possible allocations can be considered	 The process is started by treating

each data point as a separate cluster	 Then two clusters are merged into one� the

particular clusters to merge being chosen to maximize the classi�cation likelihood

�	�� over the estimated parameters	 This stepwise process is continued until there

are k clusters	 The allocations at that point are taken as the estimate bZ	 Estima

tors of � and � based on bZ could be used� but their properties are not as desirable
as those obtained from the EM algorithm for example� they are not necessarily

consistent� as stated in McLachlan and Basford ����� section �	����	

Derivation of b�Z�� and b�Z��� maximizers of the classi�cation likelihood for

�xed Z�� is now shown	 First de�ne the sample mean of a cluster i as

+yi �
�Pn

j�� zji

nX
j��

zjiyj	 �	��

Then the classi�cation log
likelihood is

L ����Z�Y� k�

� log
kY
i��

nY
j��

�fyjj�i����
zji

�
kX
i��

nX
j��

zji log fyjj�i���

�
kX
i��

nX
j��

zji

�
� log���� �

�
log j�j � �

�
yj � �i�

���� yj � �i�

�



��

�
�
�n log���� n

�
log j�j

�
� �
�

kX
i��

nX
j��

zji yj � �i�
���� yj � �i�

�
�
�n log���� n

�
log j�j

�
� �
�

kX
i��

nX
j��

zjitr
�
yj � �i�

���� yj � �i�
�

�
�
�n log���� n

�
log j�j

�
� �
�
tr

	
kX
i��

nX
j��

zji yj � �i� yj ��i�
����




�
�
�n log���� n

�
log j�j

�
� �
�
tr

	
kX
i��

�
nX
j��

zji yj � +yi� yj � +yi�� 

nX
j��

zji +yi � �i� +yi � �i�
�
�
���



�
�
�n log���� n

�
log j�j

�
� �
�
tr

	�
kX
i��

nX
j��

zji yj � +yi� yj � +yi��
�
���


�

�

�

kX
i��

tr

	�
nX
j��

zji

�
+yi � �i� +yi � �i�

����



since
kX
i��

zji � � �j�

�
�
�n log���� n

�
log j�j

�
� n

�
tr

	�
�

n

kX
i��

nX
j��

zji yj � +yi� yj � +yi��
�
���


�

�

�

kX
i��

�
nX
j��

zji

�
+yi � �i�

�
��� +yi � �i� 	 �	��

The maximum of the classi�cation likelihood for a �xed Z� can then be com


puted most conveniently as

max
���

L ����Z��Y� k� � max
�

�
max
�

L ����Z��Y� k�

�
	

From �	�� it is clear that L ����Z��Y� k� is maximized over � uniquely byb�Z�� � +y�� 	 	 	 � +yk�
� computed at Z�	 �	��

By Lemma �	�	� of Anderson ������ we have that

L b�Z�����Z��Y� k� �
�
�n log���� n

�
log j�j

�
�



��

n

�
tr

	�
�

n

kX
i��

nX
j��

zji yj � +yi� yj � +yi��
�
���



is maximized over � byb�Z�� �
�

n

kX
i��

nX
j��

zji yj � +yi� yj � +yi�� �	��

computed at Z�	

Thus we have

max
���

L ����Z��Y� k� � �n log���� n

�
log

������n
kX
i��

nX
j��

zji yj � +yi� yj � +yi��
������ n�

and so the agglomerative hierarchical clustering algorithm chooses a cluster merge

at each stage to minimize
��� �nPk

i��

Pn
j�� zji yj � +yi� yj � +yi��

���	 This result is often
referred to as the determinant criterion and is due to Friedman and Rubin �����	

Fraley ����� develops e!cient techniques to perform the clustering� which are

implemented in the MCLUST�EMCLUST software Fraley� �����	

The allocations bZ� given by the agglomerative hierarchical clustering algo


rithm are then used as the starting values for the EM algorithm� which involves

maximization over � and �� and integration over the conditional distribution of

Z given � and �� of the complete�data log
likelihood see �	���	 However� note

that �	�� is simply a constant multiple of the classi�cation likelihood �	�� for �xed

k and n	 Even though the E
step produces estimates bZ that are not integer
valued�
�	�� and �	�� are still valid when zji � f�� �g is replaced with bzji � �� ��	 Thus
the M
step of the EM algorithm is given by �	�� and �	��	 As far as the E
step

is concerned� since L ����Z�Y� k� is a linear function in Z see �	���� its condi


tional expectation over Z given � and � is determined easily from the conditional

distribution of Z given � and �� which is derived below	

First note that

p Z jY����� k � �
p Y jZ����� k � p Z j���� k �

p Y j���� k �



��

� p Y jZ����� k �

since p Z j���� k � � �

kn
	

Also�

p Y jZ����� k � �
nY
j��

kY
i��

�fyjj�i����
zji

�
nY
j��

	
kY
i��

Izj � i� exp


��
�
yj � �i�

���� yj � �i�

�

�

where I�� is the indicator function�
and so z�� 	 	 	 � zn are independent by factorization�� and for each j � f�� 	 	 	 � ng

P zj � i jY����� k � � exp


��
�
yj � �i�

���� yj � �i�

�
for i � f�� 	 	 	 � kg	

Thus

P zj � i jY����� k � �
exp
���

� yj ��i�
���� yj ��i�

�Pk
q�� exp

n
��

�

�
yj � �q

��
��� �yj � �q

�o �	��

independently for each j � f�� 	 	 	 � ng	
Note that

Pk
i�� P zj � i jY����� k � � � �j	 Since
E zji jY����� k � � P zj � i jY����� k � �

the E
step is solved	

Putting it altogether� we have the form of the normal mixture model EM

algorithm for �xed k� as described in Fraley and Raftery ������

Algorithm ����� �EM Algorithm for Fixed k
 Estimates for the parameters

����� of a BVNPCPA� k� n� are computed as follows	 for a given tolerance ��

Step �� Agglomerative Hierarchical Clustering Perform agglomerative hier�

archical clustering	 choosing the clusters to merge at each stage by minimizing������n
kX
i��

nX
j��

zji yj � +yi� yj � +yi��
����� �

to yield an initial allocation estimate bZ���



��

Step �� M�step Given bZt� � fbzjit�g	 compute

b�t �� � b�t ���� 	 	 	 � b�t ��k�
where b�t ��i � �Pn

j�� bzjit�
nX
j��

bzjit�yj
and b�t �� � �

n

kX
i��

nX
j��

bzjit� yj � +yi� yj � +yi�� 	
Step �� Convergence Check If t � � and���L�b�t ��� b�t ���Y� bZt�� k��L

�b�t�� b�t��Y� bZt�� k�������L�b�t ��� b�t ���Y� bZt�� k���� � ��

then go to Step �� Otherwise proceed to Step ��

Step �� E�step Given �b�t ��� b�t ���	 compute bZt �� according to
bzjit �� � exp


��

� yj � b�t ��i�� hb�t ��i�� yj � b�t ��i��Pk
q�� exp


��

�

�
yj � b�t ��q�� hb�t ��i�� �yj � b�t ��q�� �

increment t by 
	 and go to Step ��

Step �� Termination Set the �nal estimates to b��k�
� b�t �� and b��k� �

b�t ��� Estimates of the expected allocations can be taken from the last

iteration of the E�step to give bZ�k� � bZt��

��� Computation of Approximate Variance of
Parameter Estimates for Fixed k

As mentioned in section �	�� estimates b��k�
� b��k�� from Algorithm �	�	� are

not guaranteed to be MLE�s of the observed
data likelihood	 However� Theorem �	�

of Chapter � in Lehmann ����� can be used to obtain the asymptotic distribu


tion of b��k�
� b��k��� since they are solutions to �	��	 The regularity conditions of

Lehmann�s theorem are not rigorously veri�ed in this thesis� but are suspected to



��

hold	 However� since many authors for example� McLachlan and Basford �����

sections �	� and �	��� advocate the use of the asymptotic distribution implied by

the theorem for computation of approximate variance in our situation� and for lack

of a better alternative� that is how we proceed	

Before stating the asymptotic distribution� some terminology regarding infor


mation matrices is introduced	 For simplicity of notation� let

� � f���g � ���� ���� ���� ���� ���� 	 	 	 � �k�� �k���

and b��k� � nb��k�� b��k�
o
�
�
$�
�k�
�� � $�

�k�
�� � $�

�k�
�� � $�

�k�
�� � $�

�k�
�� � 	 	 	 � $�

�k�
k� � $�

�k�
k�

��
De�nition ����� �Observed Information Matrix
 The observed information ma�

trix for the BVNPCPA� k� n� is given by

Io �jY� k� �
���L ��Y� k�

���

�
�

the negative of the Hessian matrix of the observed�data �mixture� likelihood�

De�nition ����� �Complete Information Matrix
 The complete information

matrix for the BVNPCPA� k� n� is given by

Ic �jY�Z� k� �
���L ��Y�Z� k�

���

�
�

the negated Hessian matrix of the complete�data likelihood�

De�nition ����� �Missing Information Matrix
 The missing information ma�

trix for the BVNPCPA� k� n� is given by

Im �jY� k� � EZ

��� log p Z j��Y� k �
���

������Y� k� 	
De�nition ����� �Fisher Information Matrix
 The Fisher �or expected� infor�

mation matrix for the BVNPCPA� k� n� is given by

I �jk� � EY �Io �jY� k�� 	
If the regularity conditions are assumed to hold� then Theorem �	� of Chapter �



��

in Lehmann ����� yields
p
nb��k� � ��

D�	N
�
�� �I �jk����� �

where �
D�	� denotes convergence in distribution	

The Fisher information I �jk� is intractable to work with in our situation� so
as suggested by McLachlan and Basford ����� sections �	� and �	��� we use the

observed information Io �jY� k� calculated at the EM estimate b��k�	 Thus we use
the approximation b��k� 


s N
�
�� �Io �jY� k����

��
b�
�k�

�
� �	���

where �


s� denotes �is approximately distributed as	�

McLachlan and Basford ������ however� do not compute the observed infor


mation matrix Io �jY� k�� directly or indirectly	 They instead use an approxima

tion� the accuracy of which is unknown	 Dasgupta and Raftery ����� analyze a

similar model and suggest the use of an approach such as the supplemented EM

algorithm Meng and Rubin� ����� which also approximates the observed informa


tion matrix� to obtain variance estimates	

However� Io �jY� k� can be computed in closed form� and that is how we will
obtain variance estimates	 Derivatives of the observed
data likelihood are di!cult

to calculate� but two results due to Louis ������ which we state in the Lemma

below� allow us to work with the complete
data likelihood�

Lemma ����� �Louis
 For arbitrary Y�Z��� k�	 if Io �jY� k�	 Ic �jY�Z� k� and
Im �jY� k� exist then

Im �jY� k� � VarZ

�L ��Y�Z� k�

��

������Y� k� �	���

and

Io �jY� k� � EZ �Ic �jY�Z� k�j��Y� k�� Im �jY� k�	 �	���

Proof � See Louis �����	



��

The result �	��� is often called the Missing Information Principle	 Due to

the construction of Algorithm �	�	�� we also have

EZ


�L ��Y�Z� k�

��

������Y� k�����
b�
�k�
�


�L ��Y�Z� k�

��

������Y� k�����
b�
�k�

�bZ�k�
� ��

and so

VarZ


�L ��Y�Z� k�

��

������Y� k�����
b�
�k�

� EZ

�
�L ��Y�Z� k�

��

�
�L ��Y�Z� k�

��

��������Y� k�����
b�
�k�
��

EZ


�L ��Y�Z� k�

��

������Y� k�����
b�
�k�

� �
EZ


�L ��Y�Z� k�

��

������Y� k�����
b�
�k�

��
� EZ

�
�L ��Y�Z� k�

��

�
�L ��Y�Z� k�

��

��������Y� k�����
b�
�k�

�	���

Using Lemma �	�	� and �	���� we thus approximate the asymptotic distribu


tion of b��k� as b��k� 

s N

�
��dVarb��k��� �	���

wheredVarb��k�� �

�
EZ

���L ��Y�Z� k�
���

������Y� k�����
b�
�k�

� �	���

EZ

�
�L ��Y�Z� k�

��

�
�L ��Y�Z� k�

��

��������Y� k�����
b�
�k�

���
	

Detailed expressions for �	��� for the BVNPCPA� k� n� are derived in Appendix A	�	

��� Composite EM Analysis of the BVNPCP

The results of sections �	� and �	� give us estimates of� for a BVNPCPA� k� n��

along with their approximate variances	 In this section� we use these quantities

from BVNPCPA� k� n� �s for a range of k�s to construct an overall� or composite

EM� estimate of � along with approximate variance matrix� that accounts for

the uncertainty in estimation of k	 The approximate asymptotic distribution of the

composite EM estimate is derived and used to construct isotropy tests and compute



��

con�dence regions for various parameterizations and components of �	

�	�	� Derivation of the Estimator

Adopting a Bayesian perspective� we can consider each BVNPCPA� k� n� as a

candidate model for the observed spatial point pattern Y� the models being indexed

by k	 Instead of attempting to choose one �correct� model� we will implement a

Bayesian model averaging scheme	 The �rst step in such a scheme is obtaining

estimated model probabilitiesn bP number of clusters � kjY�
o
�
�bp�k��

for a reasonable range fklo� 	 	 	 � khig of possible k note the suppression of depen

dence on Y in the notation�	

Fraley and Raftery ����� section �	�� promote the use of the Bayesian In�

formation Criterion �BIC� Schwarz� ����� to assess model probabilities for our

situation	 They state �although the regularity conditions for BIC do not hold for

mixture models� there is considerable theoretical and practical support for its use

in this context�� citing Leroux ������ Roeder and Wasserman ������ Dasgupta

and Raftery ������ Campbell et al	 ������ Mukerjee et al	 �����	 The BIC for a

particular k is de�ned as

BICEM
k � �L

�b��k��Y� k�� �parameters� logn� �	���

� �L
�b��k��Y� k�� �k  �� logn�� �	���

since we have � parameters for each cluster mean �i and � for �	 Note� there

is variation in the literature regarding the use of logn� vs	 logrn�� where r is

the dimension of an observation yi� but we choose logn� as in Fraley and Raftery

������	 The BIC can be used to calculate approximate Bayes factors see Kass and

Raftery ������� and also posterior model probabilities for given prior probabilities



��

of each candidate model	 We assign equal prior probabilities to models in a range

fklo� 	 	 	 � khig and compute estimated model probabilities� like in Raftery �����
equation ���� as

bp�k� � exp
�
�
�BIC

EM
k

�Pkhi
q�klo

exp
�
�
�
BICEM

q

� �	���

Next we obtain parameter estimates and variance approximations from BVN


PCPA� k� n� �s for k � fklo� 	 	 	 � khig using the methods of sections �	� and �	�	
Instead of considering � as a parameter� we now follow the Bayesian paradigm and

consider it a random vector �	 with a distribution of its own	 Using Result �iii� of

Berger ����� section �	�	��� we have

�	


s N

�b��k��dVarb��k��� � �	���

where b��k�is the EM estimate anddVarb��k�� is given by �	���	
For investigation of isotropy we are only interested in estimation of �� and

so we extract the appropriate subvector �	 from �	� subvector b��k� from b��k�� and
submatrixdVarb��k�� fromdVarb��k�� in �	��� to obtain

�	 

s N

�b��k��dVarb��k��
�
	 �	���

A generalization of equations �� and �� of Raftery ����� from scalar to vector

form gives estimates of E�	jY� and Var�	jY� as
�E�	jY� �

khiX
k�klo

b��k�bp�k� �	���

and

�Var�	jY� �

khiX
k�klo

dVarb��k��  
hb��k�

i hb��k�
i�� bp�k� � �	���

	
khiX

k�klo

b��k�bp�k�
	 khiX
k�klo

b��k�bp�k�
� 	
This suggests an estimator

b� � �E�	jY� �	���



��

with approximate variance given bydVarb�� � �Var�	jY�	 �	���

Although �	��� suggests that the asymptotic distribution of b� is a mixture of

normal distributions� we will approximate the distribution as multivariate normal

in constructing con�dence regions and test statistics	 This is somewhat reasonable

in cases where a small collection of nearby k�s are dominant in estimated model

probabilities� but certainly less reasonable in situations with many and�or disparate

supported values of k	 In our analyses� the former situation is more common� but

caution is nevertheless advised	

So we will take b� of �	��� as our composite EM estimator of � and approxi


mate its asymptotic distribution from �	��� and �	��� � �	��� as

b� 

s N

�
��dVarb��� 	 �	���

Note that �Var�	jY� in �	��� can be re
written as�
khiX

k�klo

dVarb��k��bp�k��  �	������
	

khiX
k�klo

�b��k�
��b��k�

�� bp�k�
� 	 khiX
k�klo

b��k�bp�k�
	 khiX
k�klo

b��k�bp�k�
�
 !" �	���

and that

diag

���
	

khiX
k�klo

�b��k�
��b��k�

�� bp�k�
� 	 khiX
k�klo

b��k�bp�k�
 	 khiX
k�klo

b��k�bp�k�
�
 !"  �

since �	��� is positive semide�nite� with equality holding only in the trivial case

that all b��k�bp�k� are equal	 The fact that �	��� is positive semide�nite is evident
from the consideration of fb��k�g as observations from some arbitrary� distribution
and �	��� as a weighted sample variance estimate for this distribution	

Therefore the variances on the diagonal of �Var�	jY� are at least as large as



��

pooled variance estimates using the weighted average
khiX

k�klo

dVarb��k��bp�k��
and so the composite EM method in�ates variance estimates which would be used

in a naive combination of separate analyses by k	 This is appropriate since the

uncertainty in estimation of k should be accounted for	

In our analyses we found that the diagonal elements of �	��� were sometimes

smaller and sometimes larger than those of �	���	

�	�	� Applications for Anisotropy Estimation and Test

ing

The composite EM estimator developed in section �	�	� can be used to pro


duce a �
dimensional con�dence region for � � ���� ���� ������ utilizing approximate

normality	 It can also be used to obtain more interpretable con�dence regions and

intervals in terms of the components of and other parameterizations of �	

Let f�� be any function of interest	 Then the multivariate ,
method yields

fb�� 

s N

�
f��� JdVarb��J �� � �	���

where b� anddVarb�� are the composite EM estimate and its approximate variance�

and

J �


�f��

��

�����
b�

�

�
�f��

����
�
�f��

����
�
�f��

����

�����
b�

�	���

Useful choices of f�� are discussed below	

To facilitate comparisons with results from Markov chain Monte Carlo in

which careful choice of parameterization is vital for some methods�� we focus on

�normalized� versions of components of � meaning parameterizations that are

likely to achieve the best approximation to normality�	 First we de�ne a useful

transformation of the correlation coe!cient which improves approximate normality�



��

De�nition ����� �Fisher	s z�transformation
 De�ne the theoretical correlation

coe�cient as

��� �
���p
������

	 �	���

Then the Fisher�s z�transformation of ��� is de�ned as

z���� �
�

�
log

�
�  ���
�� ���

�
	

Componentwise con�dence intervals are constructed for the following choices

of f���

log ���� log ���� z����� log �� log �� �� �	���

the �rst � involving the regular parameterization see De�nition �	�	��� and the last

� involving the anisotropy parameterization see De�nition �	�	���	 Detailed expres


sions of the Jacobians J �	��� for these parameters are shown in Appendix A	�	

Note that the null value of log � in the case of isotropy is �� which is on the

boundary of the parameter space	 Thus an isotropy test utilizing an estimate of log �

is subject to criticism	 However� a con�dence interval for log � is still meaningful�

especially in cases where there is clear anisotropy� the strength of which one wishes

to assess	 There does not appear to be an adequate adjustment to the de�nition of

�� or its estimation� that will render it inarguably acceptable for isotropy testing	

Perhaps there should not be� as the test of isotropy is really a �
degree
of
freedom

test� comparing the situations � � ��I� and � arbitrary�	

A more appropriate test of isotropy is the simultaneous assessment of the

di�erence in variances and the covariance� the normalized version of which is

�c � log ��� � log ���� z������ 	 �	���

A well
de�ned isotropy test is a test of �c � �	 A �
dimensional con�dence region

for �c can be plotted� with its deviation from the null value � suggesting the nature

and extent of anisotropy	 The components of the Jacobian J �	��� for �c are given



��

in Appendix A	�	

By �	���� an approximate �������� con�dence interval for a scalar function
f�� is computed as

fb�� � z���
� �

h
JdVarb��J �i�� � �	���

where b� is the composite EM parameter estimate�dVarb�� is its approximate vari

ance� J is as de�ned in �	���� and z���

� �
is the �� �

�
�th quantile of the standard

normal distribution	

Similarly� an approximate ���� � ��� con�dence region for �c is

�b�c��
hdVarb�c�

i��
�b�c� � ��

� �� ��� �	���

where �c � log $��� � log $���� z������ is the composite EM parameter estimate�dVarb�c� is its approximated variance according to �	���� and ��
� �� �� is the

� � ��th quantile of the Chi
square distribution with � degrees of freedom	 An

isotropy test can be conducted by computing the left
hand side of �	���� say Xobs�

and obtaining a p
value of P X � Xobs� where X s ��
�	
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CHAPTER �

RJMCMC ALGORITHM DESIGN

��� Motivation

While the composite EM technique of Chapter � o�ers an appealing method

to account for the unknown number of clusters k in estimation of � for a BVNPCP�

it is subject to criticism on the grounds of the questionable accuracy of the BIC

used to estimate model probabilities	 An alternative modeling strategy is to adopt

a fully Bayesian perspective by specifying the BVNPCP as a Bayesian hierarchical

model including all unknowns� parameters and latent data alike� and assigning a

distribution to each unknown quantity	 In particular� k can be allowed to vary in

the hierarchical model� permitting uncertainty of its true value to be inherently

accounted for in the estimation of quantities of interest in our case� ��	

As in Chapter �� we will think of the BVNPCP in terms of a mixture model	

Markov chain Monte Carlo MCMC� methods Hastings� ����� Metropolis et al	�

����� Geman and Geman� ����� Gelfand and Smith� ����� have been successfully

applied to problems in �nite mixture analysis	 Diebolt and Robert ������ Lavine

and West ������ Bensmail� Celeux� Raftery� and Robert ����� and other authors

have developed Gibbs sampling approaches to analyze univariate and multivariate

normal mixture models for �xed k	 In such approaches� k is treated as a model

indicator� and any of a number of available model selection techniques utilizing

marginal likelihood estimates are applied to in an attempt to choose the �best� k	



��

Examples of such methods applied recently include the Laplace
Metropolis estima


tor Raftery� ������ importance
sampling
based estimators Newton and Raftery�

������ the Schwarz BIC criterion Schwarz� ����� and Approximate Weight of Evi


dence Ban�eld and Raftery� �����	

Typical MCMC methods e	g	 the Gibbs sampler and Metropolis
Hastings

algorithm� apply only to situations in which the dimension of the parameter space

is �xed	 However� we wish to model k as a parameter� in which case the dimen


sion of the parameter space is not �xed e	g	� the dimensionality of � varies with

k�	 Stephens ����� develops a generalization of the Metropolis
Hastings algorithm

based on the Markov spatial birth
and
death process Geyer and M%ller� ����� to

allow for varying parameter space dimension� applying it to multivariate normal

mixtures	 Another method to handle varying parameter space dimensions is jump

di�usion Grenander and Miller� ����� Phillips and Smith� �����	 Carlin and Chib

����� design a sampler consisting of several parallel chains� each traversing its own

parameter space� and take the output on a given sweep to be the state of one of the

parallel chains	 This approach appears to work well but requires a large amount

of additional analytical e�ort and computer time for problems such as ours� it is

probably not feasible for more than a handful of k values	 A more �exible tech


nique applicable to Bayesian hierarchical models with varying dimension� which can

be considered a generalization of the methods of Stephens ����� and Phillips and

Smith ������ is reversible jump Markov chain Monte Carlo �RJMCMC�� developed

by Green �����	 RJMCMC is essentially a random sweep Metropolis
Hastings

method adapted for general state spaces	 Richardson and Green ����� develop

an application of RJMCMC to univariate normal mixture models	 We construct

a version applicable to bivariate normal mixture models� suitable for modeling a



��

BVNPCP	

Construction of the algorithm itself is presented in this chapter	 A primary

drawback of dimension
changing MCMC methods has been the lack of suitable

convergence assessment techniques	 In Chapter � we propose a new convergence

assessment method applicable to MCMC situations which are indexed by models

k�	 Output analysis procedures are discussed in Chapter �	

��� A Bayesian Hierarchical Model Speci�cation
of the BVNPCP

A fully Bayesian speci�cation of the BVNPCP is achieved as a Bayesian hi�

erarchical model �BHM�� in which prior distributions are assigned to all unknown

quantities sometimes generically called �parameters�� including both latent data

and quantities that would traditonally be called parameters in a frequentist anal


ysis�	 Some of these distributions are de�ned in terms of �xed hyperparameters	

First we present our de�nition of the BVNPCP as a Bayesian hierarchical model

BVNPCP�BHMA�n� ��

De�nition ����� �Bayesian hierarchical model speci�cation of a BVNPCP


A BVNPCP�BHMA�n� for a study region A and observed total o�spring count n

is de�ned as follows�


� The positions of the o�spring relative to the locations � of their parents

�parentage being determined by Z� are independently and identically distributed

as N����	 conditional on being con�ned to A	 i�e�	

yj jfk���Z��g s N
�
�zj ��

�
and are independent	 ��j � f�� 	 	 	 � ng�

conditional on fy�� 	 	 	 �yng � A	

�� Let the allocations �Z� be de�ned as in �	�� and zj denote the jth row of Z�



��

De�ne the notation �zj � q� to represent

zji �

��� �� if i � q

�� otherwise	

Allocations are determined independently as

z�� 	 	 	 � zn
i�i�d�
s Mult

�
��
�

k
�

�
�

i�e�	

z�� 	 	 	 � zn are independent with P zj � q� �
�

k
�q � f�� 	 	 	 � kg	

�� Parent event locations ��	 also called cluster centers� are independently dis�

tributed uniformly on A	 i�e�	

��� 	 	 	 ��k
i�i�d�
s UA� and are independent	

�� The number of parents �k� is uniformly distributed on the set of integers

fklo� 	 	 	 � khig	 i�e�	
k s Ufklo� 	 	 	 � khig

where klo and khi are �xed hyperparameters�

�� The cluster shapescale parameter ��	 common to all clusters� is distributed

�independent of all other quantities� according to an Inverse Wishart distri�

bution	 according to

���
sW�m�V ��

where m is the ��xed hyperparameter� degrees of freedom parameter and V

the ��xed hyperparameter� covariance matrix parameter� �Generally	 we will

take m � � and V �� � m��I for reasonable ��	 implying isotropy in the most

uninformative way possible��

The Inverse Wishart distribution is a typical choice for the prior distribution of

a covariance matrix see e	g	 Stephens ������ who also studies bivariate normal
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mixtures� and is a multivariate generalization of the Inverse Gamma distribution�

which is very commonly used for scalar variances e	g	� Diebolt and Robert� �����	

The Inverse Wishart family is a conjugate family of prior distributions� thus making

Gibbs sampling feasible for updating � as we will see in section �	��	

A realization of a BVNPCP
BHMA�n� conditional on the realized values of

k and � is clearly equivalent to the BVNPCPA� k� n� and mixture model speci�


cations see De�nitions �	�	� and �	�	��	 Prior distributions of k and � are chosen

to be as uninformative as possible while still being proper� so as to have minimal

e�ect on inference	 We could have used a Poiss�� prior for k except disallowing

k � �� to match the BVNPCP assumption� but this is not practical unless either ��

there is evidence suggesting likely values of k� or �� the same process is observed

in more than one study region	 The quantities k and � would not be separately

identi�able for only one realized pattern in a region A	 In fact� in the case of only

one realized pattern as considered in this thesis�� inference for k can be considered

equivalent to inference for �	 The parameter  of the BVNPCP becomes irrelevant

due to conditioning on total number of o�spring n	

A useful representation of a Bayesian hierarchical model is a Directed Acyclic

Graph �DAG�� which is shown for our BVNPCP
BHMA�n� model in Figure �	�	

We follow the same conventions as Spiegelhalter et al	 ����� and Richardson and

Green ����� by enclosing unknown quantities in circles and �xed or observed quan


tities in boxes	 Each such enclosed quantity is called a node	 An arc represents a

direct probabilistic dependency and points from a parent not to be confused with

the term �parent event� in BVNPCP terminology� to a child i	e	� children nodes

are stochastically dependent on their parent nodes��	 Lauritzen� Dawid� Larsen�

and Leimer ����� establish that the joint distribution of all random quantities is
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Figure �	�� Directed Acyclic Graph DAG� for a BVNPCP
BHM	

fully speci�ed in terms of the conditional distribution of each node given its parents	

Also� for any node �� once the values of its parent nodes are given� no other nodes

besides the descendants of � are informative concerning �	

For simplicity of notation� let the unknown quantities be represented as � and

the �xed� hyperparameters as �	 Then we have

Unknown quantities� � � k���Z���

Fixed hyperparameters� � � klo� khi�m� V �

Observed data� Y

The joint prior distribution refers to the distribution of � before the data Y are

observed and is typically written as �p��	� The notation �p�j��� might be more
appropriate� but dependence on � is implied and suppressed in notation	 Also note

in particular that since the distribution of ��� is more convenient to specify than

that of �� the quantities � and ��� may be used interchangeably in notation
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when the meaning is not ambiguous	 For the BVNPCP
BHMA�n�� the joint prior

distribution can be determined as follows�

p�� � p�j��

� pk�������Zj��

� p�jk���Z� ��pZjk��� ��p���jk� ��pkj��

� p�jk�pZjk�p���jm�V �pkjkhi� klo� �	��

where� using De�nition �	�	��

pkjkhi� klo� � �

khi � klo  �

p�jk� � �

jAjk
pZjk� � �

kn

and

p���jm�V � � C��jV j�m
�

�������m��
� exp


��
�
tr
�
V �������

where m  � and C � �m�
�
�-
�m
�

�
-

�
m� �
�

�
	

The likelihood for a Bayesian hierarchical model is de�ned as the distribution

of the observed data given all other quantities� and is given by De�nition �	�	� as�

pYj�� � pYj��Z���

�
nY
j��

�
�

��

��������� exp��
�

�
yj � �zj

��
���

�
yj � �zj

���

�
�

���n
j�j�n

� exp

�
��
�

nX
j��

�
yj � �zj

��
���

�
yj � �zj

��
�	��

Note that this is equivalent to the classi�cation likelihood de�ned in �	��	

The aim of MCMC is to construct a Markov chain
n
��t�
o
whose limiting

distribution is p�jY�� the posterior distribution of unknown quantities given the

observed data� thus allowing us to obtain a dependent� sample approximately�

from that distribution	 Note that dependence on � is again suppressed in notation�	
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The chain is started at an initial value �� chosen at will�	 For a given state �s� a

new state �s
� is produced by �updating� some component of �s a �component�

being de�ned as any subset of �� ranging from one scalar parameter to the entire

set of parameters�	 The value of �s is saved at pre
determined stages e	g	� perhaps

after each member of a exhaustive set of components is updated in turn� to create

a sequence
n
��t�
o
� each member of which is referred to as a sweep	

The updating must be performed according to certain criteria to ensure the

proper limiting distribution	 The two most common types of updating schemes

which satisfy these criteria are Gibbs sampling and the Metropolis�Hastings algo�

rithm� the former actually being a special case of the latter see Brooks ����� for a

review�	 If the full conditional distribution of a component �c given all other quan


tities of the model f��c��Y� �g� can be determined and easily sampled from� then
a Gibbs step can be implemented� in which �c is updated by randomly generating

a new value from p�cj��c��Y� ��	 Note� the notation ��c� represents all quantities
in � except those in �c�	 Otherwise� if updating �c will not alter the parameter

space of �� then a traditional Metropolis
Hastings step can be implemented	 In this

type of update� a proposed new value �	c is simulated from any distribution having

the correct support� but accepted only with a computable probability computed

using the forms of the proposal distribution� prior distribution and likelihood�	 If

it is not accepted� then the chain retains its current value of �c	 For the BVNPCP


BHMA�n�� we will see that a Gibbs update works nicely for �� � and Z	 However�

neither a Gibbs nor any other traditional Metropolis
Hastings update will work for

k� since a change in k alters the dimension of �	 Therefore a new mechanism is

required to handle transitions from one parameter space into another	 RJMCMC�



��

explained in the next section� provides such a mechanism	 We will use it to de


sign new types of Markov chain transitions �moves�� which update k along with

selected other components of �	

��� RJMCMC Methodology

Green ����� introduces a new mechanism� reversible jump Markov chain

Monte Carlo �RJMCMC�� for Markov chain updates which allow transition be


tween parameter spaces of di�ering dimension �dimension
changing moves��	 He

establishes a Markov transition kernel ���d��� where � and d� may belong to dif


ferent parameter spaces with di�erent dimensions� which is aperiodic� irreducible�

and satis�es detailed balance�Z
A

Z
B

P d�ajY� � ��a�d�b� � Z
B

Z
A

P
�
d�bjY�� ��b�d�a� �	��

for any Borel sets A�B in the combined parameter space .a � .b� where �
a � .a

and �b � .b	

Detailed balance essentially means that the equilibrium probability of moving

to A and then B is equal to that of moving to B and then A	 These conditions

aperiodicity� irreducibility and detailed balance� are more than enough to ensure

ergodicity and the correct limiting distribution p�jY� of a chain implementing
transitions according to ��� ��	 Thus after a suitable �burn
in period� to be assessed
more rigorously in Chapter ��� we can treat samples from a Markov chain with

transitions given by ��� �� as dependent observations approximately from p�jY�	
Note� the Gibbs sampler and Metropolis
Hastings algorithm are actually special

cases of ��� �� for which the parameter space is �xed�	 See Green ����� for details	
We now describe the mechanism for dimension
changing moves designed by
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Green ������ dissecting the scheme into more components to improve clarity	 Con


sider a pair of movesMa and Mb that provide transitions between parameter spaces

.a and .b� possibly of di�erent dimension	 Let �
a � .a and �

b � .b	 The notation

�
Ma�	�	 represents an implementation of Ma which updates the state of the Markov

chain from � to �	� where � and �	 could be identical	 The reversible jump mecha


nism is essentially a method to determine acceptance probabilities ��a��b�Ma�Mb�

and ��b��a�Mb�Ma� such that moves are implemented according to

�a
Mb�	
��� �b� with probability ��a��b�Ma�Mb�

�a� with probability � � ��a��b�Ma�Mb�
�	��

and

�b
Ma�	
��� �a� with probability ��b��a�Mb�Ma�

�b� with probability �� ��b��a�Mb�Ma�	
�	��

The acceptance probabilities are determined as follows	 From �a� a move of

type Mb is started by proposing a new state �
b according to�

c Mb��
a� � probability of choosing this particular move type Mb

when at �a� �	��

d D�a� � probabilities of discrete random variables D�a

if any� generated as part of the move attaining

their realized values otherwise� ��� �	��

q U�a� � density of continuous random variables U�a if any�

generated as part of the move otherwise� ��� �	������� T�b�� T�a�

���� � Jacobian of deterministic components if any� of the

mapping �a�D�a� U�a� �	
�
�b�D�b� U�b

�
� represented

more succinctly as T�a �	 T�b� where T�a� T�b� are terms

in �a�D�a� U�a� and �
b�D�b� U�b� involved in any



��

besides trivial identity mappings otherwise� ��� �	��

where c
�
Ma��

b
�
� d D�b� and q U�b� are de�ned analogously for a �reverse� move

Ma which proposes a transition from �b to �a� and

dimT�a� � dimT�b� � �	���

where �	��� is referred to as the dimension�matching condition	

Then the acceptance probabilities are given by�

��a��b�Ma�Mb� � min
�
�� R

�
�a��b�Ma�Mb

��
�	���

where

R
�
�a��b�Ma�Mb

�
�

�
pYj�b�
pYj�a�

� �
p�b�

p�a�

�	
c
�
Ma��

b
�

c Mb��
a�



� �	����

d D�b�

d D�a�

� �
q U�b�

q U�a�

� ����� T�b�� T�a�

�����
and

��b��a�Mb�Ma� � min
�
�� R

�
�b��a�Mb�Ma

��
�	���

where

R
�
�b��a�Mb�Ma

�
�

�

R
�
�a��b�Ma�Mb

� 	 �	���

If the denominator of an acceptance probability is calculated as zero� then the

convention is to set the acceptance probability to zero� since the move would not

be possible�	

So� computation of the acceptance probability for a jump �a
Mb�	 �b requires

a reconstruction of how the reverse jump �b
Ma�	 �a would have occurred	

If a pair of moves Ma�Mb� is designed according to �	�� � �	���� then detailed

balance holds� and a �reversible jump� between parameter spaces .a and .b is

established	
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��� Algorithm Design for the BVNPCP�BHM

The RJMCMC mechanism allows a considerable amount of �exibility in the

design of state updates moves� in a MCMC strategy	 The challenge is to construct

a collection of move types so that a� dimension
changing moves yield acceptance

probabilities in a moderate range where �moderate� is not well
de�ned for RJM


CMC� and b� the entire collection of moves exhaustively updates or at least at


tempts to� all components of �	 Acceptance probabilities that are too low will tend

to produce poor �mixing� properties i	e	� the chain will converge very slowly to its

limiting distribution� and dependence between successive sweeps will likely be very

high�	 On the other hand� acceptance probabilities that are too high will tend to

correspond to only minor state changes� and may cause the chain to get �stuck�

i	e	� fail to traverse all areas or modes of the combined parameter space�	 Thus� to

put it succinctly� dimension
changing moves must be bold but sensible	

The RJMCMC strategy we develop for a BVNPCP
BHMA�n� is roughly

based on the move types used in Richardson and Green ������ but adapted for

bivariate data� and modi�ed to overcome a �aw apparently missed by Richardson

and Green �����	 An essentially unlimited amount of �ne
tuning is possible for

the dimension
changing moves� we implement details as suggested by limited exper


imentation and do not claim our choices to be optimal	 We suspect that �ne
tuning

is unlikely to lead to signi�cant improvement	 Richardson and Green ����� p	 ����

state that �it is rarely worth �ne
tuning the proposal distribution� especially if do


ing so prevents simple and explicit random variate generation	� We do not exclude

the possibility that the addition of clever new move types may signi�cantly improve

the design� but this is left for future research	 See section �	� for a discussion of the

unexpected result of attempts to improve a move by adding a Gibbs update	
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Let the notation p�cj � � �� represent the full conditional distribution of a com

ponent �c of � given the values of all other components� i	e	 p�cj��c��	 Our RJM

CMC strategy for the BVNPCP
BHMA�n� consists of the following collection of

move types�

M� Update ��� update � via a Gibbs step� by generating a new value from

p�j � � ��

M� Update ��� update � via a Gibbs step� by generating a new value from

p�j � � ��

MZ Update Z�� update Z via a Gibbs step� by generating a new value from

pZj � � ��

MS�MC Split�Combine�� attempt to either split a cluster in two or combine two

�neighboring� clusters into one

MB�MD Birth�Death�� attempt to either generate a new cluster center at a ran


dom location� or delete an existing cluster center

Note that MS�MC� is a �reversible jump� pair of dimension
changing moves� as is

MB�MD�	

The birth�death move pair� although perhaps somewhat redundant and in


e!cient in the presence of split�combine� is included because of the possibility of

split�combine moves being insu!cient to explore certain regions of the parame


ter space	 Perhaps the addition or deletion of a cluster center in a certain area

would improve the situation� but is discouraged by the limited capability of the

split�combine mechanism	 At some point in the chain� a birth or death move may

attempt such a maneuver	



��

Details of the move types� and �nally the overall algorithm� are given in the

next several subsections	 First we de�ne some notation and new terminology that

will be used	

For any symbol �a�� the quantities �a� ka��a��a�Za� denote the current val


ues of �� k�����Z� at a given state �a� in the Markov chain where �a� is not

an index of time or sweeps� but rather is set to a value suggestive of its contextual

meaning�	 The absence of a symbol when not ambiguous� may also suggest a state�

e	g	� we could discuss a transition from � to �		

The notation +yi retains the same meaning as given in �	��	 Since zji � f�� �g
always holds in our RJMCMC method� we also de�ne

ni �
nX
j��

zji �	���

to indicate the number of o�spring allocated to cluster i	

In combining clusters� acceptance probabilities are reasonable only for at


tempts to combine nearby clusters	 Thus� for the MC move� a de�nition of �adja


cency� is needed	 Since we are modeling in general� a geometrically anisotropic

process� the usual Euclidean distance is inappropriate	 Instead� an alternative mea


sure of adjacency is de�ned�

De�nition ����� �NN�
 The � � Nearest � Neighbor NN�� of a cluster i is

de�ned as

NN�i� � argmin
q ��i

h�
�q � �i

��
��� ��q � �i

�i
�

in other words	 the cluster with the closest center to its own in terms of the Maha�

lanobis distance induced by ��

In deriving full conditional distributions and ascertaining which moves can

be performed in parallel� it is helpful to consult a Conditional Independence Graph

�CIG� of the model� which is shown in Figure �	�	
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Figure �	�� Conditional Independence Graph CIG� for a BVNPCP
BHM	

The CIG is formed by �moralizing� the DAG� i	e	 connecting common parents

of children nodes� and dropping the arrows Lauritzen and Spiegelhalter� �����	

The conditional distribution of a node in the CIG given all other quantities can be

reduced to its distribution given nodes it is directly connected to	 In other words�

nodes not connected in the CIG are conditionally independent given all other nodes�	

We see from Figure �	� that there are no conditional independencies among �� �

and Z� and thus we cannot implement any Gibbs steps in parallel	

In general� the derivations of full conditional distributions and other densities

are given by De�nition �	�	�� �	�� �	�� and Figures �	� and �	�	 Detailed reasons are

given only for nonstandard steps in the derivations	
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�	�	� M� Details

The full conditional distribution of � given all other quantities can be deter


mined as follows�

p�j � � �� � p�jY�Z��� k�

�
pYj��Z��� k�p�jZ��� k�

pYjZ��� k�
�

pYj��Z���p�jk�
pYjZ��� k�

� pYj��Z���p�jk�

� exp

�
��
�

nX
j��

�
yj � �zj

��
���

�
yj � �zj

��

� exp

�
��
�

kX
i��

nX
j��

zji yj � �i�
���� yj � �i�

�

� exp

�
�n
�
tr

	�
�

n

kX
i��

nX
j��

zji yj � +yi� yj � +yi��
�
���



�

�

�

kX
i��

�
nX
j��

zji

�
+yi � �i�

���� +yi � �i�

�
see �	�� for details of the previous step�

�
kY
i��

exp


��
�
ni +yi � �i�

���� +yi � �i�

�

� exp

�
��
�

kX
i��

�i � +yi��
�
�

ni
�

���
�i � +yi�

�
�

implying that ��� 	 	 	 ��k� are independently distributed with�ij � � � s N
�
+yi�

�
ni
�
�
	

Thus the update �
M��	 �	 can be performed with a Gibbs step as follows�

����Z� k�
M��	 �	���Z� k�

where �	
�� 	 	 	 ��

	
k� are generated independently according to

�	
i s N

�
+yi�

�

ni
�

�
� i � f�� 	 	 	 � kg	 �	���
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�	�	� M� Details

The full conditional distribution of ��� given all other quantities can be de


termined as follows�

p���j � � �� � p���jY�Z���m� V �

�
pYj��Z���m� V �p���jZ���m� V �

pYjZ���m� V �

�
pYj��Z���p���jm�V �

pYjZ���
� pYj��Z���p���jm�V �

�
	�������n� exp���

�

nX
j��

�
yj � �zj

��
���

�
yj � �zj

��

���������m��

� exp


��
�
tr
�
V ��������

�
�������n�m��

� exp


��
�

�
tr
�
V ������ 

nX
j��

�
yj � �zj

��
���

�
yj � �zj

�
�

�
�������n�m��

� exp


��
�

�
tr
�
V ������ 

tr

��
nX
j��

�
yj � �zj

��
yj � �zj

���
���
�
�

�
�������n�m��

� exp


��
�
tr
��
V �� 

nX
j��

�
yj � �zj

��
yj ��zj

���
���

�

�

implying that

���j � � � s W�

#$m n�

	
V ��  

nX
j��

�
yj ��zj

��
yj � �zj

��
��%A 	

Thus the update �
M��	 �	 can be performed with a Gibbs step as follows�

����Z� k�
M��	 �	���Z� k�



��

where �	 is generated according to�
����	
s W�

#$m n�

	
V ��  

nX
j��

�
yj � �zj

��
yj � �zj

��
��%A 	 �	���

Note that the update involves essentially a weighted contribution of prior and

observed data� with weight n
n
m

given to the data	 Thus� with m � � and n  ���
as in the applications in this thesis�� the prior has very little in�uence provided V

is chosen reasonably	

�	�	� MZ Details

The full conditional distribution of Z given all other quantities can be deter


mined as follows�

pZj � � �� � pZjY����� k�

�
pYjZ����� k�pZj���� k�

pYj���� k�
�

pYjZ�����pZjk�
pYj����

� pYjZ�����pZjk�

� exp

�
��
�

nX
j��

�
yj ��zj

��
���

�
yj � �zj

��

� exp

�
��
�

nX
j��

�
yj ��zj

��
���

�
yj � �zj

��

�
nY
j��

	
kY
i��

Izj � i� exp


��
�
yj � �i�

���� yj � �i�

�

�

and so z�� 	 	 	 � zn are independent by factorization�� and for each j � f�� 	 	 	 � ng
P zj � i jY����� k � � exp


��
�
yj � �i�

�
��� yj � �i�

�
for i � f�� 	 	 	 � kg	

Thus

P zj � i jY����� k � �
exp
���

� yj ��i�
���� yj ��i�

�Pk
q�� exp

n
��

�

�
yj � �q

��
��� �yj � �q

�o



��

independently for each j � f�� 	 	 	 � ng�
duplicating the result �	��	

Thus the update �
MZ�	 �	 can be performed with a Gibbs step as follows�

Z����� k�
MZ�	 Z	����� k�

where z	�� 	 	 	 � z
	
n� are generated independently according to

P
�
z	j � i jY����� k � � exp

���
�
yj � �i�

���� yj � �i�
�Pk

q�� exp
n
��

�

�
yj � �q

��
��� �yj � �q

�o 	 �	���

�	�	� MS�MC� Details

The split�combine move pair MS�MC � is designed as a �reversible jump�

satisfying �	�� � �	���	 We �rst describe the mechanisms and then derive the cor


responding acceptance probabilities� starting with the simpler combine mechanism	

The combine move attempts a transition from �S to �C through the following

sequence of steps�

Algorithm ����� �COMBINE
 Implement the move �S
MC�	 �C as follows�


� Initialize �C to �S�

�� Choose a cluster	 say i�	 from the uniform distribution on the integers f�� 	 	 	 � kSg	
i�e�	

i� s Uf�� 	 	 	 � kSg

�� Determine i� � NN�C i�� according to �C 	 i�e�	 identify the ��Nearest�

Neighbor i� of i� in the current state�

�� Combine clusters i� and i� into cluster i	 by averaging the cluster centers and

re�allocating o�spring from i� and i� to i		 as follows�

�a� Set kC to kS � ��



��

�b� Set i	 to mini�� i���

�c� Set �C
i� �

�
�

�
�S
i�
 �S

i�

�
�

�d� Set �C
i to �S

i
� for i � fmaxi�� i��� 	 	 	 � kCg and then discard �kC
��

�e� For all j such that zCj � maxi�� i��	 set z
C
j � i	�

�f� For all j such that zCj � fmaxi�� i��  �� 	 	 	 � kC  �g	 set zCj to zCj � ��

�� Update �S according to

�S
MC�	

��� �C � with probability ��S��C �MS�MC�

�S � with probability �� ��S��C�MS �MC��

where ��S ��C �MS�MC� is determined by �	����

The split move attempts a transition from �C to �S through the following

sequence of steps�

Algorithm ����� �SPLIT
 Implement the move �C
MS�	 �S as follows�


� Initialize �S to �C�

�� Choose a cluster i	 from the uniform distribution on the integers f�� 	 	 	 � kCg	
i�e�	

i	 s Uf�� 	 	 	 � kCg

�� Split cluster i	 into clusters i� and i� as follows�

�a� Set kS to kC  ��

�b� Set i� � i	 and i� � kS�

�c� Sample u from N
�
���C

�
�

�d� Set �S
i�
� �C

i� � u and set �S
i�
� �C

i�  u�



��

�e� For all j such that zSj � i		 sample zSj from fi�� i�g	 analogously to ���
��	
independently according to

P
�
zSj � i�

�
�

exp
n
��

�

�
yj � �S

i�

�� �
�S
��� �yj � �S

i�

�o
P

q�fi��i�g exp
n
��

�

�
yj � �S

q

�� �
�S
��� �

yj � �S
q

�o 	
�� Determine NN� � NN�Si�� according to �S 	 i�e�	 identify the ��Nearest�

Neighbor NN� of i� in the proposed new state�

�� Determine NN� � NN�Si�� according to �S 	 i�e�	 identify the ��Nearest�

Neighbor NN� of i� in the proposed new state�

�� If NN� �� i� and NN� �� i�	 then preserve the current state	 i�e�	 update

�C according to �C
MS�	 �C �since the reverse move from �S to �C would be

impossible��

�� If NN� � i� or NN� � i�	 then update �C according to

�C
MS�	

��� �S � with probability ��C��S�MC �MS�

�C � with probability �� ��C ��S�MC �MS��

where ��C ��S �MC�MS� is determined by �	����

We will specify later that a choice of split�combine� � MS�MC � meaning

that one of split or combine will be attempted� will be made with probability �
�� at

an arbitrary state � of the chain	 If MS�MC� is chosen� then theMS and MC move

types are attempted with equal probability� provided k � klo forMC and k � khi for

MS 	 Encountering an inappropriate k is interpreted as �not choosing the move�� so

that this information belongs in c�� ��	 In other words�

c
�
MS ��

C
�
�

���
�
��� if kC � khi

�� otherwise
�	���



��

and

c
�
MC��

S
�
�

���
�
��� if kS � klo

�� otherwise	
�	���

Now we consider discrete random variables generated as part of the moves	

In the combine move� it is important to realize that i�� i�� are actually chosen as

a pair� the same pair could result if either is chosen �rst	 So for MC we have

D�S � i�� i��	 If NN�Si�� � i� and NN�S i�� � i��� then either i� or i� could

be initially chosen in the combine mechanism� resulting in the same pair i�� i�� to

combine and hence the same move	 The probability of either being chosen is �
kS
	

If NN�Si�� � i� and NN�Si�� �� i�� or NN�Si�� �� i� and NN�Si�� � i���

then only one cluster choice would create the pair i�� i��	 If NN�S i�� �� i� and

NN�Si�� �� i��� then i�� i�� would not be chosen in MC 	 Thus we have

d D�S� �
�

kS
�I NN�S i�� � i��  I NN�S i�� � i��� 	 �	���

In the split move� the discrete quantities generated are the cluster to split i	�

with probability �
kC
� and the new allocations for o�spring belonging to that cluster	

New values are assigned to zSj for j such that z
C
j � i	� and the � possible values for

each are fi�� i�g � fi	� kC  �g	 Hence
D�C � fi	g �

�
zSj for j such that z

C
j � i	

�
�

and

d D�C � �
�

kC

Y
j�zCj �i

�

exp


��

�

�
yj � �S

zSj

�� �
�S
��� �

yj � �S
zSj

��
P

q�fi��kC
�g exp
n
��

�

�
yj � �S

q

�� �
�S
��� �

yj ��S
q

�o 	 �	���
There are no continuous quantities generated for the combine move� so

q U�S� � �	 �	���

For the split move� U�C � u and

q U�C � �
�

��

���C
��� �

� exp


��
�
u�
�
�C
���

u

�
	 �	���

The only terms involved in non
trivial deterministic mappings are T�C �



��

f�C
i��ug and T�S � f�S

i�
��S

i�
g	 Expressed in terms of scalars� this mapping is

�Si��� � �Ci��� � u�

�Si��� � �Ci��� � u�

�Si��� � �Ci���  u�

�Si��� � �Ci���  u�

Note that the dimension
matching condition �	��� is satis�ed	 The Jacobian of the

mapping is calculated as

����� T�S �� T�C �

���� �
��������������


�Si���


�C
i���


�Si���


�C
i���


�Si� ��

�Cu�


�Si���

�Cu�


�Si���


�C
i���


�Si���


�C
i���


�Si� ��

�Cu�


�Si���

�Cu�


�Si���


�C
i���


�Si���


�C
i���


�Si� ��

�Cu�


�Si���

�Cu�


�Si���


�C
i���


�Si���


�C
i���


�Si� ��

�Cu�


�Si���

�Cu�

��������������

�

�������������

� � �� �

� � � ��
� � � �

� � � �

�������������
� �	 �	���

Finally� the likelihood and prior ratios are determined simply by plugging in

the values of �C and �S��
pYj�S�
pYj�C�

� �
p�S�

p�C�

�
�

�
pYj�S�
pYj�C�

� �
p�SjkS�pZS jkS�pkS jkhi� klo�
p�CjkC�pZC jkC�pkC jkhi� klo�

�
�

�
pYj�S�
pYj�C�

�
jAj
�

kC

kC  �

�n

	 �	���

Now we have all the factors required for calculation of the acceptance proba


bilities	 These are computed according to �	�����	���� using values from �	����

�	���� as follows�

��C��S�MC �MS� � min
�
�� R

�
�C��S�MC �MS

��
�	���



��

where

R
�
�C ��S�MC �MS

�
�

�
pYj�S�
pYj�C�

� �
p�S�

p�C�

� 	
c
�
MC ��

S
�

c
�
MS��

C
�
 � �	����

d D�S�

d D�C �

� �
q U�S �

q U�C�

� ����� T�S �� T�C �

�����
and

��S��C�MS �MC� � min
�
�� R

�
�S��C�MS �MC

��
�	���

where

R
�
�S ��C �MS�MC

�
�

�

R
�
�C ��S �MC�MS

� 	 �	���

Note that the strategy for generation of u in the split mechanism could be

implemented di�erently	 In Algorithm �	�	�� the � new clusters are displaced in op


posite directions from the original cluster on the scale of the variation of o�spring

about parents	 This scale could be increased or decreased i	e	� generating the dis


placement u from N�� q�C� for some constant q� in pilot runs to ascertain values

yielding better acceptance rates for a given data set although this would be some


what time consuming� and perhaps not worth the e�ort�	 Richardson and Green

����� pursue a di�erent strategy in one dimension�� generating u from a Beta

distribution and displacing by a multiple of u depending on current estimates of

variances and mixing proportions�	 However� a consequence of this strategy is that

a combine move may not be reversible� since the hypothetical reverse split move

might need to generate a u outside ��� �� to accomplish the required displacement�

a feat impossible for the Beta distribution	 Richardson and Green ����� do not

appear to account for this possibility	 Analogous moves correcting for the hypo


thetical reverse split problem� which can be accomplished easily through adjustment

of d��� could certainly be implemented in our �
dimensional scheme	



��

�	�	� MB�MD� Details

The birth�death move pair MB�MD� is also designed as a �reversible jump�

satisfying �	�� � �	���	 We �rst describe the mechanisms and then derive the

corresponding acceptance probabilities	

The death move attempts a transition from �B to �D through the following

sequence of steps�

Algorithm ����� �DEATH
 Implement the move �B
MD�	 �D as follows�


� Initialize �D to �B�

�� Choose a cluster	 say i		 from the uniform distribution on the integers f�� 	 	 	 � kBg	
i�e�	

i	 s Uf�� 	 	 	 � kBg

�� Delete cluster i	 and re�allocate its o�spring to other clusters	 as follows�

�a� Set kD to kB � � and discard �i��

�b� Re�label remaining cluster�centers as �� 	 	 	 � kD and re�label ZD accord�

ingly �except for j such that zBj � i		 which are handled below��

�c� For all j such that zBj � i		 sample zDj from f�� 	 	 	 � kDg	 analogously to

�	���	 independently according to

P
�
zDj � i

�
�

exp
n
��

�

�
yj � �D

i

�� �
�D
��� �

yj � �D
i

�o
PkD

q�� exp
n
��

�

�
yj � �D

q

�� �
�D
��� �

yj � �D
q

�o 	
�� Update �B according to

�B
MD�	

��� �D� with probability ��B��D�MB�MD�

�B� with probability � � ��B��D�MB�MD��

where ��B��D�MB�MD� is determined by �	����



��

The birth move attempts a transition from �D to �B through the following

sequence of steps�

Algorithm ����� �BIRTH
 Implement the move �D
MB�	 �B as follows�


� Initialize �B to �D�

�� Create a new cluster i	 and give all o�spring a chance to switch to this cluster	

as follows�

�a� Set kB to kD  ��

�b� Set i	 � kB�

�c� Sample �B
i� from the uniform distribution on A	 UA��

�d� Update ZB so that o�spring can either stay in their current clusters or

switch to i	� for all j	 sample zBj from fzDj � i	g	 analogously to �	���	

independently according to

P
�
zBj � i	

�
�

exp
n
��

�

�
yj � �B

i�

�� �
�B
��� �

yj ��B
i�

�o
P

q�fzDj �i�g exp
n
��

�

�
yj � �B

q

�� �
�B
��� �

yj � �B
q

�o 	
�� Update �D according to

�D
MB�	

��� �B� with probability ��D��B�MD�MB�

�D� with probability �� ��D��B�MD�MB��

where ��D��B�MD�MB� is determined by �	����

A choice of MB�MD� meaning that one of birth or death will be attempted�

will be made with probability �
�� at an arbitrary state � of the chain	 If MB�MD�

is chosen� then the MB and MD move types are attempted with equal probability�

provided k � klo for MD and k � khi for MB	 As with MS�MC�� encountering an

inappropriate k is interpreted as �not choosing the move�� so that this information



��

belongs in c�� ��	 So we have

c
�
MB��

D
�
�

���
�
��
� if kD � khi

�� otherwise
�	���

and

c
�
MD��

B
�
�

���
�
��
� if kB � klo

�� otherwise	
�	���

For the death move MD we choose a cluster i	 to delete and then re
allocate

its o�spring	 Hence

D�B � fi	g � fzDj for j such that zBj � i	g

d D�B � �
�

kB

Y
j�zBj �i

�

exp


��

�

�
yj � �D

zDj

�� �
�D
��� �

yj � �D
zDj

��
PkB��

q�� exp
n
��

�

�
yj � �D

q

�� �
�D
��� �

yj � �D
q

�o 	 �	���

In the birth move MB� the only discrete quantities generated are the new

allocations for each o�spring	 The � possible values for the jth o�spring are zDj and

i		 Hence D�D � ZB and

d D�D� �
nY
j��

exp


��

�

�
yj � �B

zBj

�� �
�B
��� �

yj � �B
zBj

��
P

q�fzDj �i�g exp
n
��

�

�
yj � �B

q

�� �
�B
��� �

yj ��B
q

�o 	 �	���

There are no continuous quantities generated for the death move� so

q U�B� � �	 �	���

For the birth move� U�D � �i� and

q U�D� �
�

jAj	 �	���

There are no non
trivial deterministic mappings� and therefore����� T�B �� T�D�

���� � �	 �	���

Finally� the likelihood and prior ratios are determined simply by plugging in

the values of �D and �B��
pYj�B�
pYj�D�

� �
p�B�

p�D�

�
�

�
pYj�B�
pYj�D�

� �
p�BjkB�pZBjkB�pkBjkhi� klo�
p�DjkD�pZDjkD�pkDjkhi� klo�

�



��

�

�
pYj�B�
pYj�D�

�
jAj
�

kD

kD  �

�n

	 �	���

Now we have all the factors required for calculation of the acceptance proba


bilities	 These are computed according to �	�����	���� using values from �	����

�	���� as follows�

��D��B�MD�MB� � min
�
�� R

�
�D��B�MD�MB

��
�	���

where

R
�
�D��B�MD�MB

�
�

�
pYj�B�
pYj�D�

� �
p�B�

p�D�

� 	
c
�
MD��

B
�

c
�
MB��

D
�
 � �	����

d D�B �

d D�D�

� �
q U�B �

q U�D�

� ����� T�B�� T�D�

�����
and

��B��D�MB�MD� � min
�
�� R

�
�B��D�MB�MD

��
�	���

where

R
�
�B��D�MB�MD

�
�

�

R
�
�D��B�MD�MB

� 	 �	���

Richardson and Green ������ in one dimension� implement birth�death of

empty clusters only	 This makes more sense in their situation� because they model

their mixing proportions instead of enforcing an equality constraint	 An empty

cluster i� in their model can be given a �weight� of zero i	e	� P zj � i�� � ��	

We tried an experimental empty cluster birth�death move type� the result being

that births were hardly ever accepted� and there were usually no empty clusters to

choose from for a death	



��

�	�	� The Overall Form of the Algorithm

De�ne the move type �M�SCBD�� as

M�SCBD� �

�����������������

MS � with probability �
�

MC � with probability �
�

MB� with probability �
�

MD� with probability �
�

Our Markov chain consists of a sequence of states of � resulting from individual

updates	 Not all of these states are saved	 The value of the chain is saved at regular

intervals� the index of which we call a sweep	 The value of the chain at sweep t

is denoted ��t�	 Also the generic notation �
 is used to denote the value of � at

a particular state	 If two or more instances of �
 appear together in the same

equation� they are not necessarily equal�	

Using terminology from sections �	�	� � �	�	�� our RJMCMC algorithm for

the BVNPCP
BHMA�n� is represented as follows�

Algorithm ����� �RJMCMC for BVNPCP�BHM
 For the BVNPCP�BHMA�n�	

implement RJMCMC as follows�


� Specify values for all �xed hyperparameters � � klo� khi�m� V ��

�� Choose an initial value �� for the chain	 in any manner desired �possibly using

the observed data�	 and set

���� � ��	

�� For t � f�� 	 	 	 � Tg	 perform the following sequence of moves�

��t���
M�SCBD��	 �


MZ�	 �

M��	 �


M��	 ��t�	

Due to limitations on storage space� we save the value at every ��th sweep of

each chain	 The order of the sequence of move types and the choice of random vs	



��

systematic scanning� and the choice of frequency of each move type in the sequence�

could certainly be changed without a�ecting the limiting distribution	 The rate of

convergence� i	e	 the mixing properties� may depend on the strategy used	 We did

not experiment with di�erent orderings	 We chose to perform dimension
changing

moves �rst and save the state directly after the Gibbs steps� suspecting that the

chain may require an update of ��Z��� to �get comfortable� immediately after

jumping into a new dimension� possibly producing more sensible output	 The �

update is performed last� essentially because our inference focuses on this parameter	

These reasons are rather ad
hoc� and we suggest future research to assess the e�ect

of such choices	

An important consequence of our particular construction of the dimension


changing moves is that cluster labels i	e	 f�� 	 	 	 � kg� are not informative	 We have
imposed no ordering restriction on the cluster centers �	 Thus� for example� ������

�

and �
�����
� have no meaningful connection� even if k����� � k�����	 Also� even though

z
�t�
j refers to the allocation of the same o�spring j on all sweeps� its value is only

meaningful in terms of the labels of ��t� on the given sweep	 This limits our selection

of applicable convergence assessment and output analysis methods	 However� we

o�er a reasonable solution to the inability to analyze convergence of all parameters

in Chapter �� and we shall see in Chapter � that a considerable number of output

analysis methods are still applicable	 Another rami�cation of this �label
switching

problem� as it is often called� is that estimation of cluster
speci�c features is not

possible	 This is not a concern in our situation� because we are primarily interested

in modeling �� which we take to be common for all clusters	

Stephens ����� Chapter �� develops two alternative algorithms to attempt

to deal with the label
switching problem	 His approach is essentially to estimate



��

the cluster labels in subsets of the MCMC output with identical k	 Richardson

and Green ������ in one dimension� impose ordering restrictions on the cluster

centers and design moves so that the ordering cannot be disturbed	 There are

several drawbacks of this strategy� however	 Robert ����� warns that it �may

create traps for the resulting Gibbs sampler�� citing Diebolt and Robert ������

and �slow convergence down	� Gilks ����� asserts that the ordering restriction

�worsens mixing in the MCMC algorithm� and is not necessary for valid Bayesian

inference	 Nobile ����� points out that if strong prior information is available� then

its use may run contrary to the ordering constraint	

As mentioned by several authors in the discussion of Richardson and Green

������ a sensible ordering restriction does not appear to be feasible in more than

one dimension	 Many authors agree with Nobile ����� on �deferring to the post


processing stage the decision on whether and which constraints to impose	� Since

the method of Stephens ����� can only approximate labels� and we are not con


cerned with estimating cluster
speci�c features� we have chosen to restrict our use

of methods to those that are invariant to label
switching	

��� The E�ect of Incorporating Gibbs Updates
into Dimension�changing Moves

Especially if the acceptance rate of a dimension
changing move is very low� it

may be advisable to attempt to �improve� the move	 One possible option is to add

to the move a �nal stage which updates parameters that do not change as part of

the existing move� by generating new values from their full conditional distribution

using the new values of parameters which do change as part of the existing move�

presumably making the collection of new parameter values more �in synch	� It



��

seems that this would make a move more �intelligent� by encouraging it to produce

a more realistic set of parameter values and consequently increase the acceptance

probability	 For example� if a split move in our RJMCMC algorithm is attempted

with only � existing clusters� then the supposed cluster shape�scale might change

dramatically	 Would the split move bene�t from an added Gibbs update of � given

the new parent locations and cluster memberships/

Consider a dimension
changing reversible move pair Ma�Mb� in an arbitrary

RJMCMC sampler	 Suppose the parameter vector can be partitioned disjointly�

into � � ������� where all parameters whose values potentially change in Ma�Mb�

are contained in ��	

For simplicity of notation� the �reversible jump device� part of �	��� is rep


resented using a function G���
G�aj�b�Ma�

G�bj�a�Mb�
�

	
c
�
Ma��

b
�

c Mb��
a�


�
d D�b�

d D�a�

� �
q U�b�

q U�a�

� ����� T�b�� T�a�

����	
Since �� is not updated as part of the moves�

G�aj�b�Ma�

G�bj�a�Mb�
� G�a�j�b���b��Ma�

G�b�j�a���a��Mb�
	

Also� note that the posterior ratio can be used in �	��� instead of the likelihood

and prior ratios� �
p�bjY�
p�ajY�

�
�

�
pYj�b�
pYj�a�

� �
p�b�

p�a�

�
	

The un
truncated� acceptance probability for Mb is then

R
�
�a��b�Ma�Mb

�
�

p�bjY�
p�ajY�

G�a�j�b���b��Ma�

G�b�j�a���a��Mb�

�
p�b���

b
�jY�

p�a���
a
�jY�

G�a�j�b���b��Ma�

G�b�j�a���a��Mb�

�
p�b�j�b��Y�p�b�jY�
p�a�j�a��Y�p�a�jY�

G�a�j�b���b��Ma�

G�b�j�a���a��Mb�

where �b� � �a��	

Consider an alternative move type M �
a�M

�
b�� which functions as follows�



��

� M �
b� Given the current state �

a� generate �b� exactly as inMb� and then sample

�b� from p��j�b��Y�	

� M �
a� Given the current state �

b� generate �a� exactly as inMa� and then sample

�a� from p��j�a��Y�	

This is a valid move pair for RJMCMC	 The only change from Ma�Mb� is the

insertion of terms p�b�j�a��Y� into q U�a� and�or d D�a�� and p�a�j�b��Y� into
q U�b� and�or d D�b� see �	�� and �	���	 The new un
truncated� acceptance

probability is

R
�
�a��b�M �

a�M
�
b

�
�

p�bjY�
p�ajY�

G�a�j�b���b��M �
a�

G�b�j�a���a��M �
b�

�
p�b���

b
�jY�

p�a���
a
�jY�

G�a�j�b���b��M �
a�

G�b�j�a���a��M �
b�

�
p�b�j�b��Y�p�b�jY�
p�a�j�a��Y�p�a�jY�

G�a�j�b���b��M �
a�

G�b�j�a���a��M �
b�

�
p�b�j�b��Y�p�b�jY�
p�a�j�a��Y�p�a�jY�

�
G�a�j�b���b��Ma�

G�b�j�a���a��Mb�

p�b�j�b��Y�
p�a�j�a��Y�

�
�

p�b�jY�
p�a�jY�

G�a�j�b���b��Ma�

G�b�j�a���a��Mb�

where �b� �� �a� necessarily�	

Thus the component p��b�j�b��Y�
p��a� j�a��Y� of the posterior ratio has been eliminated from the

acceptance probability( This is not the only change from R
�
�a��b�Ma�Mb

�
� how


ever� the value of G��a� j�b���b��Ma�

G��b�j�a� ��a��Mb�
may be di�erent because �b� � �a� in Ma�Mb� but

not necessarily in M �
a�M

�
b�	 It is di!cult to imagine cases where this di�erence

would be bene�cial� but we do not deny the possibility	 Regardless� it is apparent

that this type of move modi�cation does not yield the anticipated e�ect	



��

CHAPTER �

RJMCMC CONVERGENCE ASSESSMENT

Before conducting inference using output from a Markov chain Monte Carlo

sampler� the output should be analyzed to determine a point at which the sampler

has �converged� to the proper limiting distribution	 There are two distinct aspects

of convergence to consider�

�	 Are the samples being generated from the correct distribution/

�	 Has the entire parameter space been traversed/

It is di!cult to rigorously verify either condition� a general strategy which we will

follow is to run several chains started at over
dispersed values	 If at some point

all chains are generating samples from approximately the same distribution� then

this distribution is presumed to be the correct one a justi�able assumption when

the Markov chain is designed properly�	 If the starting values are appropriately

over
dispersed� then it is also likely that the parameter space has been thoroughly

traversed as well	

��� Choice of Parameters to Monitor

In MCMC convergence assessment it is recommended that� if feasible� all

parameters are monitored� and if not� then at least one representative parameter of

each �type� is monitored	 The output of the RJMCMC sampler Algorithm �	�	��

consists of k�t�� ��t�� ��t�� and Z�t� for each sweep t	 Firstly� k and � � ���� ���� ����
can be monitored easily� as these parameters retain the same meaning from sweep



��

to sweep	 As mentioned at the end of section �	�	�� label
switching inhibits the

possibility of monitoring individual components of � and Z	 However� we have

devised an approach to monitor a combination of � and Z which is identi�able	 A

certain number of o�spring are �marked�� and the parent locations of these o�spring

are tracked from sweep to sweep	 We choose to monitor � o�spring� chosen as�

�	 an event near the center of a clearly de�ned cluster�

�	 an event located between � clusters that are potential competitors for owner


ship of this event� and

�	 an isolated event that could potentially be the sole member of a cluster� or an

outlier in another cluster	

The purpose of these particular choices is to attempt to monitor parent locations

that are expected to �uctuate across sweeps in di�erent ways	 This approach es


sentially boils down to monitoring �zj� � �zj� and �zj� � scalar parameters in all�

for � chosen o�spring j�� j� and j�	 These quantities retain the same meaning from

sweep to sweep� and they represent instances of both parent locations and o�spring

allocations	 We emphasize that the choice of o�spring to track can be made after

the sampler is run� since we are only using the usual sampler output	

The point patterns analyzed in this thesis are shown in Figures C	� � C	�� with

the o�spring whose parent locations are to be monitored in convergence assessment

marked as ���� ��� and ��	� Detailed descriptions of the implementation of the

RJMCMC algorithm for the Redwood data and simulated patterns are postponed

until Chapter �� but some �gures displaying results of such RJMCMC runs are

referred to in this chapter for explanatory purposes	
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��� Initial Assessment

A sensible �rst step for any convergence assessment technique is inspection of

trace plots for each scalar parameter chosen to monitor	 A collection of such trace

plots is displayed in Figure D	� for the �rst �� ��� sweeps of a RJMCMC sampler

run for the Redwood data� with every ��th sweep shown� and in Figure D	� for all

���� ��� sweeps of this run with every ����th sweep shown	 It is not possible to

ascertain �convergence� from such plots� but they can be helpful in revealing any

major problems	 The trace plots in Figure D	� show that at least the � parameters

appear to explore di�erent regions of the parameter space over time� without re


turning	 This indicates that su!cient mixing has not yet occurred� and the sampler

should probably be run longer	 Note that k occasionally stays at one value for long

periods of time� and the values of � components appear to change along with k	

In contrast� the trace plots in Figure D	� appear to be well
behaved in the sense

that variation is more homogeneous over time� thus there is no indication of trou


ble	 Note the occasional spikes in the trace plots of the tracked parent locations�

these represent instances of the o�spring being allocated to an unusual cluster	 As

long as these spikes occur somewhat regularly over time� they are not indicators of

convergence trouble	

Since we do not monitor allocations Z in their pure form� it is informative

to check allocations for at least a handful of sweeps	 Figure D	� shows allocations

at the last occurrence of k � �� ��� �� and ��� for the same RJMCMC run	 Many

authors� particularly in the hidden Markov chain literature� have proposed tech


niques for monitoring allocations Gruet et al	� ����� Robert et al	� ����� Robert

and Titterington� ����� Robert and Mengersen� �����	 Most involve constructing

grayscale plots of observation number vs	 sweep number with the darkness of the
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plotted points representing allocations	 The grayscale patterns across sweeps then

suggest whether allocations are remaining stable or �uctuating wildly for each o�


spring	 Such allocation plots become useless in the presence of a signi�cant amount

of label
switching� however� and so are not useful for our model	 Even if o�spring

tend to stay with the same clusters over time� the labels may change as an artifact

of the dimension
changing mechanisms	

Another useful feature to monitor as an initial assessment is autocorrelation

functions ACF�s� of the parameters at di�erent lags	 The ACF estimates the

correlation between ��t� and ��t
g� for a given parameter � and lag g	 High ACF�s for

a parameter indicate slow mixing� which is not in itself a sign of lack of convergence�

but does provide a warning that convergence is likely to be slow	 A chain with high

ACF�s will take a long time to traverse the entire parameter space	 High ACF�s

also warn that it will be inappropriate to estimate variances with the usual sample

variance estimator	 ACF�s for normalized versions of parameters except �� in the

RJMCMC run on the Redwood data� using every ��th sweep for the last ���� ���

sweeps� are shown in Figure D	�	 Normalized versions are used in anticipation of

their use to construct con�dence intervals and tests� methods for which we must

carefully deal with autocorrelation	 Since we saved only every ��th value from the

MCMC output� �lag
�� could technically be considered lag
��	 Note the extremely

high ACF of k� which is not surprising given that dimension changes do not occur

very often	 The ACF�s of log ���� log ���� and log� follow suit� since the cluster

size tends to vary predictably with k	 The parameters describing cluster shape

z����� log ��� however� have lower ACF�s� suggesting that shape estimates may not

vary as much with k	 All tracked � parameters except �j�� have extremely low

ACF� the high ACF for �j�� is likely due to extended periods of time in di�erent



��

clusters	

Finally� an assessment of acceptance rates for dimension
changing moves is

useful in targeting any move types which may be ine!cient	 As mentioned in

the beginning of section �	�� reasonable ranges of acceptance rates for dimension


changing moves have not yet been established� but one could at least compare

acceptance rates for di�erent move types	 Such comparisons should not be taken too

seriously� however� as some moves may have lower acceptance rates but provide for

transitions not covered by other moves as we suspect is the case for our birth�death

move� although for the relatively small data sets used in this thesis we cannot

evaluate this supposition�	

��� Previous Related Approaches

Virtually none of the existing MCMC convergence assessment techniques ap


ply to RJMCMC due to the transitions between di�erent parameter spaces	 A thor


ough review of MCMC convergence assessment techniques is provided by Cowles

and Carlin ����� and Mengersen� Robert� and Guihenneuc
Jouyaux �����	 Most

are univariate� considering only one parameter at a time	 Currently� the two most

popular types are those developed by Geweke ����� and Gelman and Rubin �����	

Geweke ����� proposes comparing univariate� sample means of a parameter com


puted from di�erent parts of a chain� using variance estimates adjusted for auto


correlation	 Gelman and Rubin ����� propose an analysis of variance ANOVA�

type approach in which several chains are run� and the ratio of a pooled variance

estimate and a within
chain variance estimate� similar to the comparison between

total mean
square and error mean square in a one
way ANOVA with �chain� being

the factor� is calculated	 The idea is that if the two variances are comparable� then
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the chains are probably realizations from a common distribution� presumably the

correct limiting distribution	 This method depends on the absence of other signif


icant factors� but for our BVNPCP
BHM� k could be considered a factor in this

paradigm� since parameters are expected to vary considerably with k	 Neither of

these two popular methods nor any others that the author is aware of� are su!


cient to detect lack of convergence within k	 Convergence within k really should be

assessed also� since k is essentially a model indicator� and some models may be less

well
behaved than others	

Extensions to Geweke�s technique do not appear to be feasible� since output

from a RJMCMC sampler for a given k consists of a series of uninterrupted sequences

separated by visits to other values of k� and thus an autocorrelation would need to

be assessed in each of these sequences	 It is an extension of Gelman and Rubin�s

method� both from univariate to multivariate and �
way
ANOVA to �
way
ANOVA�

that we develop in the next section	 First we discuss some other extensions of their

technique which are relevant	

�	�	� Brooks and Gelman�s Multivariate Potential Scale
Reduction Factor MPSRF�

Brooks and Gelman ����� introduce several di�erent versions of Gelman and

Rubin�s convergence diagnostic and suggest monitoring both numerator and denom


inator� not just a ratio	 One of the versions is multivariate in the sense of providing

an upper bound of an analogous convergence diagnostic computed for a set of scalar

parameters	

We will focus on their multivariate convergence diagnostic� but �rst derive the

univariate analogue	 It requires running C � � chains of a MCMC sampler with
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T sweeps each� say� with over
dispersed starting values	 A number m of successive

overlapping� �batches� of increasing length multiples of a base batch length b� of

the output are analyzed from each chain	 Let �
�qb
��
c � 	 	 	 � �

��qb�
c � denote the qth batch

of length qb� from chain c for a scalar parameter �� where c � f�� 	 	 	 � Cg	 Successive
batches for q � �� 	 	 	 � T

b
are used	 Brooks and Gelman ����� propose monitoringbV �q���� W �q��� and

bV �q����

W �q����
which they call the potential scale reduction factor� or

PSRF�� de�ned below� computed for each batch	

De�ning +����c and +����� as

+����c �
�

qb

�qbX
t�qb
�

��t�c and +����� �
�

qbC

CX
c��

�qbX
t�qb
�

��t�c �

the quantities of interest are de�ned as follows�bV �q��� �
qb� �
qb

W �q���  

�
�  

�

C

�
B���qb�

and

W �q��� �
�

Cqb� ��
CX
c��

�qbX
t�qb
�

�
��t�c � +����c

��
where

B���qb� �
�

C � �
CX
c��

�
+����c � +�����

��
	

The value of bV �q��� should be larger than W �q��� for small q� since the start


ing values are over
dispersed� they may approach a common value as q increases�

indicating that the variation is homogeneous across chains	 It may happen that the

numerator and denominator happen to �uctuate together but yield a ratio close to

�� so Brooks and Gelman ����� recommend monitoring these individually in addi


tion to the ratio	 They mention that� provided the starting values are appropriately

over
dispersed� the settling of
bV �q����
W �q����

to a neighborhood of �� and of bV �q��� and

W �q��� approximately to a common value for q  q�� are generally adequate rea


sons to justify inferences based on posterior means and variances of the collection of

samples f��q�b
��� ��q�b
��� 	 	 	g	 This situation often suggests additionally that the
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chains are following the same distribution� but they warn that only approximate

equivalence of the �rst � moments across chains has been established	 It is di!cult

to determine how close to � is �close enough�� they cite a cuto� of �	� as a rule of

thumb in one of their examples	

The multivariate version for a vector � of parameters is de�ned analogously�

estimating posterior variance
covariance matrices instead of scalar variances�

De�ning +�
���
c and +�

���
� as

+�
���
c �

�

qb

�qbX
t�qb
�

��t�c and +�
���
� �

�

qbC

CX
c��

�qbX
t�qb
�

��t�c �

the multivariate convergence diagnostics are given bybV �q��� �
qb� �
qb

W �q���  

�
�  

�

C

�
B���qb�

and

W �q��� �
�

Cqb� ��
CX
c��

�qbX
t�qb
�

�
��t�c � +����c

��
��t�c � +����c

��
where

B���qb� �
�

C � �
CX
c��

�
+�
���
c � +�����

��
+�
���
c � +�����

��
	

The multivariate PSRF MPSRF� is then de�ned as a maximumroot statistic


type measure of distance between bV �q��� and W �q����

MPSRF �� � max
a��p

a�bV �q���a

a�W �q���a
�

where p is the dimension of �	 They proceed to prove that MPSRF �� can be

represented in terms of the maximum eigenvalue of
�
W �q���

��� bV �q���� and that it

provides an upper bound on the collection of univariate PSRF�s�
bV �q���i�

W �q���i�
� where �i

is the ith scalar component of �	 We now present these results in generic notation	

Lemma ����� For two non�singular	 positive de�nite and symmetric p�p matrices

M and N 	

max
a��p

a�Ma

a�Na
� ��

where � is the largest eigenvalue of N��M �
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Proof � See Mardia� Kent� and Bibby ����� Theorem A	�	��	 �

Lemma ����� Let M and N be two non�singular	 positive de�nite and symmetric

p�p matrices	 and denote the diagonal elements as fm�� 	 	 	 �mpg and fn�� 	 	 	 � npg	
respectively� Then

max
a��p

a�Ma

a�Na
 max

i�f������pg
mi

ni
	

Proof � Let ij denote a p � � vector of zeroes with the jth entry replaced by �	
Then

max
a��p

a�Ma

a�Na
 max

j�f������pg
i�jM ij

i�jN ij
� max

i�f������pg
mi

ni
	 �

Note that the collection fv�� 	 	 	 � vpg of diagonal elements of the multivariate
version of bV are equivalent to the univariate versions� and that the same holds

for the diagonal elements fw�� 	 	 	 � wpg of W 	 Thus Lemma �	�	� establishes that
Brooks and Gelman�s MPSRF is an upper bound of the unvariate PSRF�s	 They

suggest monitoring this MPSRF� and also f
�bV �q���

�
and f

�
W �q���

�
for some

real
valued function f��� such as the determinant	

�	�	� Brooks and Giudici�s Proposed RJMCMC Diag

nostic

Brooks and Giudici ����� introduce the �rst proposed method� a univariate

one� speci�cally designed for RJMCMC convergence assessment	 The basic idea is to

compute various decompositions of the estimated variance of a collection of samples

of a scalar parameter from C di�erent chains	 Two factors determine the decom


positions� �model� the indicator of the di�erent parameter spaces� and �chain	�

The scalar parameter chosen must have the same meaning across all models	 They

claim that the decompositions correspond to three pairs of variance estimates� with

each member of a pair estimating the same quantity	 Thus they propose following
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the method of Brooks and Gelman ����� by monitoring each of these � pairs and

the � ratios they produce	

Brooks and Giudici do not specify how batches should be chosen for analysis	

For simplicity of notation� we will consider calculations for one batch only	 Suppose

C � � chains of a RJMCMC sampler are run	 Let � be a scalar parameter in the

chain with equivalent interpretation across models�� T denote the batch size� and

M denote the total number of di�erent models di�erent parameter spaces� visited

by any chain for this batch	 De�ne �rcm as the r
th value of � occurring in chain c and

model m	 Also de�ne Rcm as the number of times model m occurs in chain c and

R�m as the number of times model m occurs across chains	 Note that Rc� � T and

the total number of sweeps in the batch over all chains is CT 	 Brooks and Giudici

����� de�ne the following quantities note� the subscripts on the left
hand side are

parts of the names� and do not correspond to values of indices on the right
hand

side��

bV �� �
�

CT � �
CX
c��

MX
m��

RcmX
r��

�
�rcm � +����

��
Wc�� �

�

C

CX
c��

MX
m��

RcmX
r��

�
�rcm � +��c�

��
T � �

Wm�� �
�

M

CX
c��

MX
m��

RcmX
r��

�
�rcm � +���m

��
R�m � �

WmWc�� �
�

CM

CX
c��

MX
m��

RcmX
r��

�
�rcm � +��cm

��
Rcm � �

Bm�� �

MX
m��

�
+���m � +����

��
M � � �	��

BmWc�� �
CX
c��

MX
m��

�
+��cm � +��c�

��
CM � �� �	��
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where

+��cm �
�

Rcm

RcmX
r��

�rcm

+��c� �
�

T

MX
m��

RcmX
r��

�rcm

+���m �
�

R�m

CX
c��

RcmX
r��

�rcm

+���� �
�

CT

CX
c��

MX
m��

RcmX
r��

�rcm	

Note� we have corrected two obvious typographical errors in the de�nitions of Wm

and Wc�	

Brooks and Giudici claim the following�

�	 Both bV �� andWc�� should well approximate the true variation of � under the

stationary distribution of the Markov chain and this comparison is essentially

the original Gelman and Rubin comparison�

�	 Both Wm�� and WmWc should well approximate the true mean within
model

variance

�	 Both Bm�� and BmWc should well approximate the true between
model vari


ance	

It is true that� in the case of equal Rcm counts� these � quantities correspond

to the descriptions they attach using ANOVA terminology	 However� in the case

of unequal Rcm counts� the meanings of the quantities are unclear	 In general� the

Rcm counts will be dramatically di�erent� as some models are less likely than others

and hence visited infrequently	 Brooks and Giudici encounter this situation in their

own example� the second and third comparisons break down when one of the chains

visits a rare model once late in the sequence	 It is easy to see why this occurs� the
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comparisons are based on unweighted sample variances of means� allowing imprecise

sample means from rare models to heavily in�uence their values	 While it may be

useful in some situations to have such diagnostics to detect rare model visits� we do

not feel that this satis�es the de�nition of a convergence diagnostic	 It is perfectly

�ne for some models to be more unlikely than others	 We reconsider Brooks and

Giudici�s apparent initial motives and develop a strategy from scratch by considering

appropriate two
way unbalanced ANOVA models	

��� A New Multivariate Strategy for RJMCMC

In this section we design a convergence diagnostic especially for RJMCMC

situations in which di�erent parameter spaces �models�� are indexed by some pa


rameter in the chain	 Our convergence diagnostic detects the following�

�	 variation between chains i	e	� the target of the original Gelman and Rubin

diagnostic� variation that is not homogeneous across chains��

�	 an interaction between models and chains i	e	� between
model variation that

di�ers from one chain to another�� and

�	 signi�cant di�erences in the frequencies of model visits from one chain to

another	

Any one of these three conditions would indicate that the chains are not living

in the same stationary distribution� and hence that convergence has not occurred	

�	�	� Forms of Variation Estimators

Suppose we have a RJMCMC sampler which produces output of a parameter

vector .� with some k � . indexing �model� and � � . a vector of parameters
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which retain the same meaning across models k �� ��	 Let the output of � be

represented as
�
���������� 	 	 	

�
	 Suppose C � � chains of this sampler are run for

the same number of sweeps	 For simplicity of notation� we will consider output

from one batch of size qb only� i	e	�
�
�
�qb
��
� � 	 	 	 ��

��qb�
�

�
� 	 	 	 �

�
�
�qb
��
C � 	 	 	 ��

��qb�
C

�
for

some q and base batch size b	 We now represent this collection in a more convenient

notation as in section �	�	��� which we describe completely below	

Let

� � vector of parameters retaining same interpretation �	��

across models

� � arbitrary scalar component of � �	��

C � number of chains �	��

T � batch size this many sweeps per chain� �	��

M � number of distinct models visited by any chain �	��

�rcm � value of � for rth occurrence of �	��

model m in chain c

Rcm � number of times model m occurred in chain c �	��

R�m �

CX
c��

Rcm �	���

+�
�
cm �

�

Rcm

RcmX
r��

�rcm �	���

+�
�
c� �

�

T

MX
m��

RcmX
r��

�rcm �	���

+�
�
�m �

�

R�m

CX
c��

RcmX
r��

�rcm �	���

+�
�
�� �

�

CT

CX
c��

MX
m��

RcmX
r��

�rcm	 �	���
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Our convergence diagnostic is based on the following estimates of variation�

note� the subscripts on the left
hand side are parts of the names� and do not

correspond to values of indices on the right
hand side��

bV �� �
�

CT � �
CX
c��

MX
m��

RcmX
r��

�
�rcm � +����

��
�	���

Wc�� �
�

CT � ��
CX
c��

MX
m��

RcmX
r��

�
�rcm � +��c�

��
�	���

Wm�� �
�

CT �M

CX
c��

MX
m��

RcmX
r��

�
�rcm � +���m

��
�	���

WmWc�� �
�

CT �M�

CX
c��

MX
m��

RcmX
r��

�
�rcm � +��cm

��
�	���

Note that these quantities may be interpreted as total variation bV �� variation
within chains Wc�� variation within models Wm�� and variation within models

and chains WmWc�	 The �rst of two comparisons we will use involves bV and Wc�

which are de�ned in the same way as Brooks and Giudici ������ and correspond

except for minor di�erences in multiplicative factors� to the original Gelman and

Rubin diagnostic	 The second involvesWm andWmWc� which are de�ned di�erently

so as to correspond meaningfully to elements of appropriate ANOVA models	 We

establish these correpondences� for both pairs of variation estimates� in the next

section	

�	�	� Interpretation from an ANOVA Perspective

The output from the RJMCMC sampler can be considered as a collection

of observations from a factorial design� in which the factors are �chain� and�or

�model	� An analysis of variance ANOVA� can be used to assess the signi�cance

of factors and interactions	 The primary exception to the usual assumptions of
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ANOVA approaches is that the samples are not independent	 However� we shall

see that certain quantities constructed from ANOVA features are still useful in sug


gesting and interpreting our convergence diagnostics	 Consider the three ANOVA

models de�ned in Tables �	� � �	�	

ANOVA �

�rcm � �  �c  ercm���

where� �c
i�i�d�
s N�� ��ch�

ercm���

i�i�d�
s N�� ��er�ch��

Source df SS

chain C � � T
PC

c��

�
+��c� � +����

��
errorchain� CT � �� PC

c��

PM
m��

PRcm

r��

�
�rcm � +��c�

��
total CT � � PC

c��

PM
m��

PRcm

r��

�
�rcm � +����

��
Table �	�� ANOVA �� One
way ANOVAwith factor chain
random�� balanced	

We represent model as a ��xed� factor and chain as �random�� which is cer


tainly debatable	 However� basically the same conclusions are reached regardless

of how the factors are treated di�ering only in description of e�ects and minor

coe!cient changes�	 For example� if model were treated as random� e�ects would

be described in terms of ��mo� not the individual e�ects f�mg	 If chain were treated
as random� e�ects would be described in terms of f�cg instead of ��ch	

Winer ����� pp	 ��� and ���� establishes the expressions for degrees of

freedom entries	 All terms which have the same notation in the three ANOVA�s

e	g	� �� �c� �m� �
�
ch� are equivalent	 The error terms e

r
cm���� e

r
cm���� e

r
cm���� are labeled
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ANOVA �

�rcm � � �m  ercm���

where�
PM

m���m � �

ercm���

i�i�d�
s N�� ��er�mo��

���mo� �
�

M��
PM

m���m
�

Source df SS

model M � � PM
m��R�m

�
+���m � +����

��
errormodel� CT �M�

PC
c��

PM
m��

PRcm

r��

�
�rcm � +���m

��
total CT � � PC

c��

PM
m��

PRcm

r��

�
�rcm � +����

��
Table �	�� ANOVA �� One
way ANOVA with factor model
�xed�� unbalanced	

di�erently because they are in general not equivalent for the three models	 In

comparing entries in the ANOVA�s with �	��� � �	���� it is clear thatbV � MStot for ANOVA �� �	���

Wc � MSer�ch� for ANOVA �� �	���

Wm � MSer�mo� for ANOVA �� and �	���

WmWc � MSer�ch�mo� for ANOVA �� �	���

where �MS� denotes mean
square	 We can of course not claim that an ANOVA

model is a realistic description of the output from parallel chains of a RJMCMC

sampler� since the assumptions of independence and normality in general do not

hold	 However� the e�ects of dependence are likely to be at least approximately

cancelled out since we are focusing on ratios of mean
squares	 The convergence

diagnostics of Gelman and Rubin ������ Brooks and Gelman ������ and Brooks
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ANOVA �

�rcm � � �c  �m  ���cm  ercm���

where� �c
i�i�d�
s N�� ��ch�PM
m���m � �

���cm
i�i�d�
s N�� ��ch�mo�

ercm���

i�i�d�
s N�� ��er�ch�mo��

���mo� �
�

M��
PM

m���m
�

Source df SS

chain C � � T
PC

c��

�
+��c� � +����

��
model M � � PM

m��R�m
�
+���m � +����

��
chain�model C � ��M � �� PC

c��

PM
m��Rcm

�
+��cm � +��c� � +���m  +����

��
errorchain�model� CT �M�

PC
c��

PM
m��

PRcm

r��

�
�rcm � +��cm

��
total CT � � PC

c��

PM
m��

PRcm

r��

�
�rcm � +����

��
Table �	�� ANOVA �� Two
way ANOVA with factors model �xed�� chain
random� and chain�model interaction random� unrestricted�� balanced across
chain only	

and Giudici ����� all make this same implicit assumption	 Furthermore� we will not

rely on approximate normality for inferences	 Thus we will proceed by considering

the sampler output as occurring approximately according to an ANOVAmodel not

specifying yet which ones�� but using Tables �	� � �	� as appropriate�	

Derivations of expected mean
squares for the three ANOVA models shown

in Appendix A	�� reveal that the expected values of �	��� � �	��� under ANOVA

assumptions are given as follows�
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EbV � ��er�ch� 

�
C � ��T
CT � �

�
��ch �	���

EWc � ��er�ch� �	���

EWm � ��er�ch�mo�  �	���	
C � ��T
CT �M

 
�

C�CT �M�

CX
c��

MX
m��

CRcm �R�m�
�

R�m



��ch  �	���	

�

C�CT �M�T

MX
m��

�
CX
c��

CRcm �R�m�
�

�
��
m



 �	���	

CT

CT �M
 

��
CT �M

CX
c��

MX
m��

R�
cm

R�m
 

�

CT

CX
c��

MX
m��

CRcm �R�m�
R�
cm

R�m



��ch�mo �	���

EWmWc � ��er�ch�mo� �	���

If the set of within
chain model frequencies is equivalent for all chains i	e	� Rcm �

R�m

C
�c�m�� then �	��� � �	��� simpli�es to

EWm � ��er�ch�mo� 

�
C � ��T
CT �M

�
��ch  

�
C � ��T
CT �M

�
��ch�mo	 �	���

For large T and any fRcmg��
E bV � ��er�ch� 

�
C � �
C

�
��ch �	���

and

EWm � ��er�ch�mo� 

�
C � �
C

�
��ch  �	���	

�

C�CT �M�

CX
c��

MX
m��

CRcm �R�m�
�

R�m



��ch  �	���	

�

C�T � �C�MT

MX
m��

�
CX
c��

CRcm �R�m�
�

�
��
m



 �	���	

�  

�
��

CT �M

CX
c��

MX
m��

R�
cm

R�m

�
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�
�

CT

CX
c��

MX
m��

CRcm �R�m�
R�
cm

R�m

�

��ch�mo	 �	���

If additionally the set of within
chain model frequencies is equivalent for all chains

Rcm �
R�m

C
�c�m�� then �	��� � �	��� simpli�es to for large T ��
EWm � ��er�ch�mo� 

�
C � �
C

�
��ch  

�
C � �
C

�
��ch�mo	 �	���

Notice that �	��� and �	���� in the presence of chain and model e�ects�

respectively� increase as the model frequencies across chains� Rcm� deviate more from

the frequencies R�m

C
that would occur if the set of within
chain model frequencies

were equivalent for all chains	

The expression �	��� can be characterized as follows	 Let

X � X�  X�  X�

where

X� �
CT

CT �M

X� �
��

CT �M

CX
c��

MX
m��

R�
cm

R�m

X� �
�

CT

CX
c��

MX
m��

CRcm �R�m�
R�
cm

R�m
	

The ranges of X� and X� can be determined from consideration of two extreme

cases�

A	 Rcm �
R�m
C

�c� and

B	 Rcm �

��� R�m� for c � c�m

�� for c �� c�m
for some fc��� 	 	 	 � c�Mg�

to be

�CT
CT �M

� X� � �T
CT �M

and

� � X� � �C � ��
CT

MX
m��

R�
�m 	
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Also� X is strictly positive because i� if case A holds� then X � �C���T
CT�M � and ii� if

case A does not hold� then X� is strictly positive	 In general� X increases although

not necessarily monotonically� as the set of within
cell model frequencies becomes

less homogeneous across chains	

Thus we can conclude the following about the ratios E bV
EWc

and EWm

EWmWc
�

�	 EbV
EWc

 �� with EbV
EWc

� � indicating the absence of a chain e�ect	 The greater

EbV
EWc

� the stronger the chain e�ect� with each term in the numerator and de


nominator stabilizing as T 	
 and thus preserving the validity of the mag


nitude as T 	
	

�	 EWm

EWmWc
 �� with EWm

EWmWc
� � indicating�

a� the absence of a chain e�ect� and

b� the absence of a chain�model interaction� and

c� either i� no model e�ect or ii� equality of the set of within
chain model

frequencies across chains� or both	

The greater the violation of any combination of these three criteria �a��

�c�� the larger EWm

EWmWc
becomes	 The relative weights of the three criteria

as T 	 
 i	e	� the sensitivity of the ratio to violations of each of the three

criteria� are not yet fully understood	 We can at least reason by �	��� that

when the set of within
chain model frequencies are somewhat homogeneous

across chains i	e	� CRcm � R�m �c�m�� then the ratio has approximately
equal sensitivity to �a� and �b�� and so either a signi�cant chain e�ect or

chain�model interaction should be detected	

These properties clearly suggest the design of a convergence diagnostic based
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on the two ratios
bV
Wc
and Wm

WmWc
	 We suggest the use of both ratios� because it may

help to narrow down the cause of any violations of convergence	 In the next section�

we show the exact form of the diagnostic technique we propose	

Expressions analogous to �	�� and �	��� represented with the proper degrees

of freedom terms in the denominators� yield expected mean
squares that do not ap


pear to be useful for comparison purposes	 Further research is needed to determine

what a ratio based on analogues of �	�� and �	�� would actually detect	

�	�	� The Convergence Assessment Strategy

De�ne the following multivariate versions of �	��� � �	����

bV �� �
�

CT � �
CX
c��

MX
m��

RcmX
r��

�
�rcm � +����

� �
�rcm � +����

��
�	���

Wc�� �
�

CT � ��
CX
c��

MX
m��

RcmX
r��

�
�rcm � +��c�

� �
�rcm � +��c�

��
�	���

Wm�� �
�

CT �M

CX
c��

MX
m��

RcmX
r��

�
�rcm � +���m

� �
�rcm � +���m

��
�	���

WmWc�� �
�

CT �M�

CX
c��

MX
m��

RcmX
r��

�
�rcm � +��cm

� �
�rcm � +��cm

��
�	���

De�ne the following set of potential scale reduction factors� for a parameter

vector � � ��� 	 	 	 � �p��� using �	�����	��� and �	�����	����

PSRF��i� �
bV �i�
Wc�i�

�	���

PSRF��i� �
Wm�i�

WmWc�i�
�	���

MPSRF��� � maximum eigenvalue of �Wc���
�� bV �� �	���

MPSRF��� � maximum eigenvalue of �WmWc���
��Wm��	 �	���

By Lemmas �	�	� and �	�	�� we have that

MPSRF���  max
i

PSRF��i� and MPSRF���  max
i

PSRF��i�	 �	���
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Our convergence assessment technique consists of the following steps�

Algorithm ����� �RJMCMC Convergence Assessment
 Implement the fol�

lowing procedure as a convergence assessment technique for RJMCMC applied to a

model with parameters .	 using �	�����	���	 �	�����	��� and �	�����	����


� Identify a parameter k � . which is an indicator of �model� and select a

parameter vector � � ��� 	 	 	 � �p�� � . consisting of quantities which have the

same interpretation across k �but with k �� ���

�� Simulate C � � chains of equal length T via RJMCMC	 with over�dispersed

starting values�

�� Choose a base batch size b �Brooks and Gelman �
���� recommend	 for exam�

ple	 b � T
��
��

�� Let the notation S�q��� represent a statistic S computed for the qth batch

��qb
��� � 	 	 	 ��
��qb�
� �� 	 	 	 � ��qb
��C � 	 	 	 ��

��qb�
C �� For batches q � �� 	 	 	 � T

b
	 do

the following�

�a� Plot MPSRF�
�q��� vs� q and MPSRF�

�q��� vs� q �separately or to�

gether��

�b� Plot the maximum eigenvalues of bV �q��� and Wc
�q��� together vs� q�

�c� Plot the maximum eigenvalues of Wm
�q��� and WmWc

�q��� together vs�

q�

�d� Optionally plot PSRF�
�q��i� vs� q and PSRF�

�q��i� vs� q�

�e� Optionally plot the numerator and denominator of PSRF�
�q��i� together

vs� q�
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�f� Optionally plot the numerator and denominator of PSRF�
�q��i� together

vs� q�

�� Determine q� such that for q  q� the plots in Step �a have settled close to 
	

and the plots in Step �b have settled approximately to a common value	 and

the plots in Step �c have settled approximately to a common value�

�� Discard the �rst q�b sweeps from each chain	 and then pool the remaining ones

together to use for inference�

We prefer the maximum eigenvalue to the determinant for monitoring indi


vidual matrices� since it is on the same scale as the univariate variance estimates

and hence can conveniently be displayed in the same plot	 The method can be per


formed on more than one parameter vector �	 It may be useful to use a collection of

related sets of scalar parameters in order to target which sets are mixing faster than

others	 The purpose of the MPSRF is to provide a safe conservative� alternative

to the monitoring of a large number of scalar parameters individually	 However� the

individual scalar parameters can still be monitored Steps �d��f�� providing more

detailed information	

For our BVNPCP
BHMA�n� model� we monitor two collections of parame


ters� log ���� log ���� z����� and �j��� �j��� �j��� �j��� �j��� �j���� which are de�ned in

section �	�	 The associated plots for the Redwood data and all simulated patterns�

for chains of length ��� ��� runs of length ���� ��� where every ��th sweep is saved�

are displayed in Figures E	� � E	��	 Very fast convergence is implied in each case	

Further research is needed to study the performance of this convergence assessment

technique� since we have only applied it to a small collection of similar datasets for

only one type of model	
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CHAPTER �

RJMCMC OUTPUT ANALYSIS

In this chapter we present the details of methods used for analysis of a post


convergent RJMCMC sample convergence being determined by Algorithm �	�	��	

Results for these methods as applied to our real and simulated data sets� along with

those from the composite EM technique� are discussed in Chapter �	

��� Notation

Suppose we have run a RJMCMC sampler for the BVNPCP
BHMA�n� and

� � ��� 	 	 	 � �p� is some p
dimensional subset of parameters of the model as opposed

to Chapter �� where we took � to represent all unknowns�	 Assume convergence

assessment has been implemented and a collection of values from a total of T post


convergent sweeps from C chains T
C
sweeps from each chain� is to be used for

inference	 Some methods need to di�erentiate between output from di�erent chains�

while others need to di�erentiate between output with di�erent k� while still others

analyze all output collectively	 So� we will use the following sets of notation as

appropriate� sometimes interchangeably provided the meaning is clear�

���� � collection of T values of � � ��� 	 	 	 � �p� consisting of

T
C
� Tch post
convergent sweeps from each of C chains

�
�
����� 	 	 	 ���T �

�
�
��

k��������������Z���
�
� 	 	 	 �

�
k�T ����T ����T ��Z�T �

��



���

�
�
������� 	 	 	 ���Tch���� 	 	 	 �����C�� 	 	 	 ���Tch�C�

�
and

����c� �
�
����c�� 	 	 	 ���Tch�c�

�
+�
���c�

�
�

Tch

TchX
t��

��t�c�

+�
���

�
�

T

TX
t��

��t��

and

���jk� � set of values at the Tk sweeps for which k�t� � k

�
�
���jk�� 	 	 	 ���Tkjk�

�
	

��� Preliminaries� Tools for Analysis

�	�	� Autocorrelation Function

The lag�g autocorrelation of two scalar components �i and �j i could equal j�

from chain c is de�ned as the correlation between ��t�i and ��t
g�j 	 It is estimated by

the autocorrelation function �ACF��

ACFg

�
�
���c�
i � �

���c�
j

�
�

PTch�g
t��

�
�
�t�c�
i � +�i���c�

��
�
�t
g�c�
j � +�j

���c��
PTch

t��

�
�
�t�c�
i � +�i���c�

��
�
�t�c�
j � +�j

���c�� 	 �	��

Note that in general ACFg
�
�
���c�
i � �

���c�
j

�
�� ACFg

�
�
���c�
j � �

���c�
i

�
	

De�ne ACFg

�
�
���c�
i

�
as ACFg

�
�
���c�
i � �

���c�
i

�
and

ACFg

�
����c�

�
� p � p matrix with i� j�th entry ACFg

�
�
���c�
i � �

���c�
j

�
	 �	��

�	�	� Batch Sampling

One of the methods we will use to construct approximate con�dence intervals

and regions for RJMCMC parameters requires estimation of posterior variances	
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Let '� be the true posterior variance of a parameter �i	 The usual sample variance

estimator

�

T � �
TX
t��

�
�
�t�
i � +����i

��
will tend to underestimate '� if there is signi�cant positive autocorrelation in the

chain which there typically will be�	 One possible remedy is to separate ����i into

batches consecutive within each chain� and then compute the mean of each batch

and the sample variance of the batch means	 These means should exhibit less

autocorrelation than the samples themselves	

Suppose we separate �
���
i into m batches consecutive within each chain�� each

of size b� with the sample means of the batches denoted

+�������i � 	 	 	 � +�����m�
i 	

Then if these batch means are relatively uncorrelated�b'�
BS

�
�
���
i

�
�

b

m� �
mX
j��

�
+�����j�i � +����i

��
is a better estimate of '� Roberts� ����� p	 ���	 Usually the strongest correlation

between batch means is the lag
� autocorrelation	 Ripley ����� p	 ���� suggests

choosing b large enough so that the ACF� of batch means is below �	��	 Since

we wish to use samples from di�erent chains� we compute the ACF� for a given

batch size separately in each chain� and choose b large enough so that the ACF� of

size
b batch means is below �	�� for all chains	 For each candidate b we compute

m � bTch
b
cC and r � integer remainder of Tch

b
� where �b�c� denotes �greatest integer

less than or equal to�� and then use m
C
batches of size b from each chain� ignoring

the �rst r sweeps of each chain� to compute the C ACF��s	

We start with b � �� and increment by �� instead of �� to save computation

time� until we encounter one b�� say� which achieves the ACF� � �	�� cuto� for all

C chains	 Then we see if we can increase b� to b�� say� and still maintain the same
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number of batches m�� say�	 Since we only try multiples of �� for b� the remainder

r described above may be large enough at b� so that we can increase the batch size

and still maintain the same number of batches� thus using as much of the output

as possible�	 Finally� we then combine all batch means for all chains and estimate

'� by dVarBS ������ � b'�
BS

�
����
�
�

b�
m� � �

m�X
j��

�
+�
����j�
i � +����i

��
	 �	��

The number of batches� m�� should be large enough for this estimate to have rea


sonable accuracy	 In our analyses� we make sure that m�  ��� we are able to �nd
a suitable b� in each case� and in most cases m� is much larger than ��	

An analogous vector multivariate� version of the batch sampling variance

estimate can also be calculated	 The choice of batch size is not as straightforward�

however	 There may be cross�
autocorrelation between di�erent scalar components

of �� and so the matrix form of ACF�� �	��� must be checked	 Due to random

�uctuations in the ACF� it is very di!cult to �nd a batch size for which all C �
p�ACF��s fall below the suggested cuto�	 We experimented with independently

generated sequences theoretical ACFg � � � g� and encountered a surprisingly

large amount of variation in batch meanACF��s	 Thus we follow a di�erent strategy

than in the scalar univariate� case and choose a batch size b� such that each cross


autocorrelation estimate in each chain has fallen below the cuto� of �	�� at some

point in the past� i	e	 for some b � b�	 As before� we increase b� if possible to

b� to obtain the largest possible batch size for the same number of batches m��

corresponding to b�	 Let � be the true posterior variance
covariance matrix of a

parameter vector �	 We then estimate � bydVarBS ������ � b�BS

�
����
�
�

b�
m� � �

m�X
j��

�
+�
����j�
i � +����

��
+�
����j�
i � +����

��
	 �	��
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�	�	� Circular Data Methods

When the anisotropy parameterization of � is used see De�nition �	�	���� the

parameter � must receive special treatment since it is a circular or� directional or

angular� parameter	 Actually� � is an axial parameter since it takes on values in an

interval of length � rather than ��	 For now� consider a circular random variable �

which takes on values in ��� ���	 We will discuss special accommodations for an axial

variable at the end of this section	 For �� values near � should be considered �close�

to those near ��	 Fisher ����� and Mardia ����� provide a wealth of methods for

the analysis of circular data� and we present a review of relevant techniques here	

Let ��� 	 	 	 � �n be an independent random sample from some circular distribu


tion de�ned on ��� ���	 The analogue of a mean for linear data is referred to as

the circular mean� or mean direction	 Suppose the true mean direction is �	 The

sample circular mean +� is de�ned as

+� � b��� �
�����������
arctan

�S
C
�
� if S � � and C � �

arctan
�S
C
�
 �� if C � �

arctan
�S
C
�
 ��� if S � � and C � �

�	��

where

C �
nX
i��

cos�i� and S �
nX
i��

sin�i�

The pth centered sample trigonometric moment is de�ned as

Mp �
�

n

nX
j��

cos�p�j � +���  i
�

n

nX
j��

sin�p�j � +���	

The �rst two are

+R �M� �
�

n

p
C�  S� �

�

n

nX
i��

cos�i � +��
also called the mean resultant length� andb�� �M� �

�

n

nX
i��

cos���i � +���	



���

A commonly used measure of spread is the sample circular dispersion�b��� � �� b��
� +R�

	

A nonparametric con�dence interval for the mean direction � is see Fisher� �����

p	 ���

+� � arcsin
#$z�

�

�b�
n

� �
�

%A 	 �	��

Note� if the computed value of z�
�

�
b
n

��
�
is greater than �� this con�dence interval is

ill
de�ned� but at least covers
�
+� � �

�
� +�  �

�

�
	 We are not interested in the variance

of the posterior mean of �� but rather the variance of the posterior distribution of

�	 Thus we will use con�dence intervals of the form +� � arcsin
�
z�
�

�b���
�

�
	

An analogue of the linear correlation coe!cient for circular data is the sample

circular correlation coe�cient	 For a paired sample of directions ��� 
��� 	 	 	 � �n� 
n��

it is de�ned as Fisher and Lee� �����

b�T�� �� �
P

�i�jn
sin�i � �j� sin
i � 
j�	� P

�i�jn
sin��i � �j�

�� P
�i�jn

sin�
i � 
j�

�
 �
�

	

The value of b�T lies in ���� ��� with b�T � � � � � 
  d�� mod ��� for some

d� and b�T � �� � � � �
  d�� mod ��� for some d�	

Also� a circular analogue of the ACFg is given byb�T�g�� � b�T calculated from ��� �g
��� 	 	 	 � �n�g� �n�

�

P
�i�jn�g

sin�i � �j� sin�i
g � �j
g�	� P
�i�jn�g

sin��i � �j�

�� P
�i�jn�g

sin��i
g � �j
g�

�
 �
�

	

Batch sampling can be implemented for circular data as well� to estimate

the circular dispersion �	 Suppose that � � � is a circular parameter sampled in

RJMCMC	 A batch size b� is chosen large enough so that b�T�� �����c�� � �	�� for



���

c � �� 	 	 	 � C and increased to b� to keep the same number of batches m�  ���

as before�	 Then the estimate is calculated from the sample circular means of the

batches� b�BS����� � b�b� �b���������� 	 	 	 � b������m���
�
	

If a circular variable � is con�ned to �a� b� where ja�bj � ��
p
� it is called p�axial	

For example� � as de�ned in De�nition �	�	�� is �
axial with a � ��
�
and b � �

�
	

Analysis of p
axial data is performed by �rst transforming to �
axial �vectorial��

data�

� �	 �	 � �p� � a�� mod ���� �	��

performing all analyses on the vectorial data� and then back
transforming the results

e	g	� con�dence interval endpoints� back to p
axial form via

�	 �	 � �
�	

p
 a �	��

Fisher see ����� p	 ���	

�	�	� Posterior Density Estimates

Perhaps the most useful and descriptive display of RJMCMC output is via

posterior density estimates	 For the parameter k� these take the form of simple

histograms	 For a sample ���� of a continuous linear parameter perhaps bounded��

we calculate a nonparametric density estimate according to the density function

in S
Plus �	� for Windows Mathsoft� Inc	�� using default options	 This employs a

Gaussian window of width W � range������
log��T �
�

	 The density estimate is evaluated at ��

equally spaced points in the range �min������ �	��W � max�����  �	��W�	
A nonparametric density estimate can also be computed for samples of the

anisotropy direction ����	 For a sample of circular data ��� 	 	 	 � �n� � ��� ���� a



���

quartic kernel is used Fisher� ����� p	 ����

wx� �

��� �	����� � x���� if �� � x � �
�� otherwise	

The bandwidth h� for n � �� is chosen as

h� �
p
�n�

�
�b�� �

�

where

b� �
�����������
� +R  +R�  �

�
+R�� if +R � �	��

��	�  �	�� +R  ����
�� �R � if �	�� � +R � �	��

�
�R��� �R�
� �R � if +R  �	��	

Then the nonparametric density estimate at a point x isbdx� � �

nh�

nX
i��

w

�
minjx� �ij� �� � jx� �ij�

h�

�
	 �	��

We choose to evaluate �	�� at ��� equally spaced points in ��� ���	 The density

estimate at x for ���� is computed as bd �� �x �
�

��
	

��� Assessment of Model Adequacy

Before proceeding to conduct inference using post
convergent RJMCMC out


put� it is wise to perform some type of �model adequacy� check to see if the data

conforms to the BVNPCP
BHM assumptions	 Since k really indexes di�erent mod


els possessing di�erent parameter sets� and we use a vague prior for k� it makes

more sense to assess model adequacy separately for each k	 Many methods are

available to perform model
checking using MCMC output	 We can apply these

methods to subsets of RJMCMC output separated by k	 The label
switching issue

see section �	�	�� is not a deterrent for any model
checking approaches� since we

will consider each sweep of the chain as a separate instance of the model	 We ex


plore two di�erent paradigms for model adequacy assessment� a� use of discrepancy



���

measures with posterior predictive densities� and b� cross
validation	

�	�	� Posterior Predictive Densities and Discrepancy
Measures

For this section let Yobs denote the observed values of o�spring locations and

Y	 denote a replication of Y with the same sample size� n	 The posterior predictive

density pY	jYobs� describes the marginal distribution of the locations of a new set

of o�spring conditional on the observed o�spring locations	 A discrepancy measure

D Y��� measures disagreement between the data Y and model with parameters

�� it may reduce to DY�� which measures deviation of Y from model assumptions

inherent for all �	

If the distribution of D Y��� under the model assumptions is known� then

a quick assessment can be implemented by computing D
�
Yobs� e���jk��� where e���jk�

is the mode of p
�
Yobs

������jk��� i	e	� the maximizer of the model likelihood over all
posterior samples	 This choice of e���jk� seems sensible since it represents the �best�
model for this k	 A Bayesian p�value can be computed as

pD � P
�
D
�
Y	� e���jk��  D

�
Yobs�e���jk��� 	 �	���

If pD is close to �� then the discrepancy between Yobs and e���jk� is excessive� if pD is
close to �� then the discrepancy is signi�cantly less than would be expected under

natural sampling variability	 Either extreme indicates a poor �t to the model	

Another method to obtain a Bayesian p
value� Monte Carlo
style� is to com


pute D
�
Yobs���tjk�

�
and D

�
Y	�t����tjk�

�
for t � �� 	 	 	 � Tk� where Y	�t� is a sample

from p
�
Y	
�����tjk��	 A Bayesian p
value with similar interpretation as �	���� except

that the discrepancy measured is between Yobs and ���� overall� is

pD �
�

Tk

TkX
t��

I
h
D
�
Y	�t����tjk�

�
 D

�
Yobs���tjk�

�i
� �	���
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the proportion of times that data randomly generated under model assumptions

displays greater discrepancy with ��tjk� than does the observed data	

As far as choices of forms of D �� �� are concerned� Gelman� Carlin� Stern� and
Rubin ����� p	 ���� recommend using more than one and trying to �re�ect aspects

of the model that are relevant to scienti�c purposes to which the inference will be

applied	� Our approach uses two forms of D �� ��� one a goodness
of
�t statistic for
bivariate normality� DCR �� ��� and the other a measure D� �� �� of the discrepancy
between b� estimated from the data given Z�tjk�� but not ��tjk� or ��tjk�� and ��tjk�	

The �rst� DCR

�
Y���tjk�

�
� is based on the bivariate normality goodness
of
�t

technique given in Johnson and Wichern ����� pp	 ��������	 Basically it estimates

� and � based on Y and Z�tjk� only� and then uses these estimates to construct

normal
theory based approximate ���� � ��� con�dence regions perhaps more

appropriately called prediction regions� for individual yj�s	 Then the number of

yj�s falling within their con�dence region is counted and compared to the expected

count� �� ��n	 Using Z�tjk� only� compute for each j � f�� 	 	 	 � ng�
b��tjk�
i �

�

n
�tjk�
i

nX
j��

z
�tjk�
ji yj� i � �� 	 	 	 � k

b��tjk�
�

�

n� �
nX
j��

�
yj � b��tjk�

z
�tjk�
j

��
yj � b��tjk�

z
�tjk�
j

��
�	���

�
d�j
��tjk�

�

�
yj � b��tjk�

z
�tjk�
j

�� hb��tjk�i���
yj � b��tjk�

z
�tjk�
j

�
where

ni �

nX
j��

zji	

Under bivariate normality and correct allocations Z� d�j


s ��

�	 Choose a con�dence

level � we use � � �	�� as suggested by Johnson and Wichern ������ and compute



���

��
�� � ��� the �� ��th quantile of ��

�	 Then de�ne

DCR

�
Y���tjk�

�
�
�

n

nX
j��

I
��
d�j
��tjk�  ��

��� ��
�
	 �	���

Note that nDCR

�
Y���tjk�

� 

s Binomialn� ��� so that an approximate p
value

for this discrepancy measure is

pD � P
�
DCR

�
Y	�e���jk��  DCR

�
Yobs�e���jk���

� P

#B$DCR

�
Y	� e���jk��� �q

������
n


DCR

�
Yobs�e���jk��� �q

������
n

%CA
� P

#B$z  DCR

�
Yobs� e���jk��� �q

������
n

%CA where z s N�� ��	

Additionally� a Chi
square plot of
�
d�j
��tjk�

vs	 ��
�

�
�d�j �

�tjk�����
���

�
could be displayed�

with deviations from a straight line indicating various types of violation of bivariate

normality see Johnson and Wichern� ����� p	 ����	

We also implement the Monte Carlo approach by simulating a dataset Y	�t�

for each ��tjk�� for j � �� 	 	 	 � n generate y	�t�j s N

�
�
�tjk�
z
�tjk�
j

���tjk�
�
	 Then we

compute the Bayesian p
value as in �	���	

The second discrepancy measure we use� D�

�
Y���tjk�

�
� utilizes the asymp


totic distribution of an estimator b��tjk�
to judge its �distance� from the true value

��tjk�	 It is computed as follows	

Compute b��tjk�
as in �	���� and let

��tjk� �

�� ��� ���

��� ���

�� � b��tjk�
�

�� s�� s��

s�� s��

�� �

��tjk� �

������
���

���

���

������ � b��tjk� �

������
s��

s��

s��

������ �
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and

-�tjk� �

������
����� ����� �������

����� ����� �������

������� ������� ������  ���
�

������ 	
It can be shown that �

n
-�tjk� is the asymptotic variance of b��tjk� under bivariate

normality and correct allocations Z� in the sense that
p
n
�b��tjk� � ��tjk�

�
D�	N��-�	

De�ne the discrepancy measure as

D�

�
Y���tjk�

�
�
�b��tjk� � ��tjk�

�� � �
n
-

��� �b��tjk� � ��tjk�
�
	 �	���

Under bivariate normality� D�

�
Y���tjk�

� 

s ��

�	 But since this asymptotic approx


imation is not as accurate as that for DCR �� ��� we only implement a Monte Carlo
scheme completely analogous to that for DCR �� ��� to compute a Bayesian p
value
pD for D�

�
Y���tjk�

�
for each k	

�	�	� Cross
validation Methods

Let yobsj denote the jth observed o�spring location� y	 a replication for an

arbitrary o�spring i	e	� with possibly di�erent allocation�� and yobs�j� the collection

of all observed o�spring locations except the jth	 Gelfand� Dey� and Chang �����

propose the use of the cross�validation predictive density p
�
y	
���yobs�j� � k

�
to assess

the �t of the data to the model indexed by k	 This density suggests which values

of y	 are likely when the model is �tted using all data except yobsj 	 Each observed

yobsj can be compared to an estimate of the corresponding p
�
�
���yobs�j� � k

�
density to

determine how well it supports the model	

We use two applications of the cross
validation predictive density	 First� the

conditional predictive ordinate for yobsj under model k can be estimated for each j
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and each k considered	 The theoretical value is de�ned as

CPOjjk � p
�
yobsj

��yobs�j� � k
�
	 �	���

Second� a measure of how likely it is to obtain a p
�
y	
���yobs�j� � k

�
value smaller

than CPOjjk i	e	� how likely it is for a new observation y	 to support the model

less than yobsj does� is de�ned as using the same �d�� name as given in Gelfand�

Dey� and Chang �������

d�jjk � P
�
p
�
y	
��yobs�j� � k

� � p
�
yobsj

��yobs�j� � k
��
� �	���

where y	 s p
�� ��yobs�j� � k

�
	 �	���

Estimates of �	��� and �	��� can be used to detect observations which are

�outliers� in the sense of not being supported by the model	 Also� summaries of

�	��� and �	��� over j can be used as a measure of overall �t of the data to the

model	 We describe such applications later� �rst we construct the estimators	

Estimators of CPOjjk and d�jjk can be based on RJMCMC output� separated

by k	 These utilize the cross�validation likelihood� de�ned as �p
�
yobsj

���yobs�j� ��
�
�

where � is the set of all model parameters	 In our BVNPCP
BHM� the de�nition

of � actually depends on Y� since � for Y includes zj� but � for yobs�j� does not	

Also� the yj�s are independent� and so yobsj does not depend on yobs�j� 	 Hence our

un�xed parameter space necessitates a modi�ed de�nition and notation for the

cross
validation likelihood� represented and computed as follows�

p
�
yobsj

����j� � � p
�
yobsj

������ z�j�� k�
� p

�
yobsj j���� k �

�

Z
p
�
yobsj � zj j���� k

�
dzj

�

Z
p
�
yobsj j���� zj

�
p zj jk �dzj
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�
kX
i��

p
�
yobsj j���� zj � i

�
P zj � ijk�

�
�

k

kX
i��

p
�
yobsj j���� zj � i

�
�

�

k

kX
i��

f
�
yobsj j�i��

�
�	���

where f�j�i��� denotes the density of N�i���	 Note that �	��� is equiva


lent to the mixture likelihood �	��	 The estimation of CPOjjk based on RJM


CMC requires a sample
n
�
��jk�
�j� � 	 	 	 ��

�Tkjk�
�j�

o
� which is tempting to obtain by takingn

���jk�� 	 	 	 ���Tkjk�
o
and removing zj from each	 However�

n
���jk�� 	 	 	 ���Tkjk�

o
is

a Monte Carlo sample from p
�
�
��Yobs� k

�
	 The proper technique in our cross


validation setting is to use a sample from p
�
�
���yobs�j� � k

�
	 Fortunately it is not

necessary to re
run the RJMCMC sampler without yobsj � the required sample can

be obtained via weighted bootstrap resampling of the RJMCMC output also called

sampling�importance resampling� see Rubin �������

For t � �� 	 	 	 � Tk� compute

wjt �
�

p
�
yobsj

�����tjk��j�

�	
Then normalize the weights to yield

w	
jt �

wjtPTk
t��wjt

	

Sample� with replacement� Tk values from
n
���jk�� 	 	 	 ���Tkjk�

o
with probabilities�

w	
j�� 	 	 	 � w

	
jTk

�
to yield

n
�	

��jk�� 	 	 	 ��	�Tkjk�
o
	 Then discard zj from each to pro


duce
n
�	

��jk�
�j� � 	 	 	 ��	

�Tkjk�
�j�

o
� a cross
validation sample from p

�
�
���yobs�j� � k

�
	

Using the cross
validation sample �	��jk��j� � CPOjjk is estimated� using �	����

by

�CPOjjk �

�� �
Tk

TkX
t��

�

p
�
yobsj

����	��jk��j�

�
���� � �	���
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the harmonic mean of the cross
validation likelihood values	 Gelfand ����� uses

the form �	���� except with ���jk��j� in place of �	��jk��j� � since he does not implement

importance resampling which is strange� because then the method is not really

cross
validatory�	 For large data sets� this is unlikely to make a di�erence	 However�

to be on the safe side� we incorporate the importance resampling	

Estimation of d�jjk requires an additional sampling step� the generation of

samples from the cross
validation predictive density p
�
y	
���yobs�j� � k

�
	 This can be

accomplished using our cross
validation sample �	��jk��j� as follows	

Note that

p
�
y	���j�

��yobs�j� � k
�
� p

�
y	
��yobs�j� ���j�� k

�
p
�
��j�
��yobs�j� � k

�
� p

�
y	
����j�� k �p ���j� ��yobs�j� � k

�
	 �	���

Therefore� if we can simulate
�
y	��	�j�

�
jointly from �	���� then y	 will marginally

be a sample from p
�
y	
���yobs�j� � k

�
	 We already have �	

��jk�
�j� from p

�
�
���yobs�j� � k

�
� so we

can obtain the required sample by generating y	�tjk� from p
�
y	
����	�tjk��j� � k

�
� using

�	����

�	 Sample z from Uf�� 	 	 	 � kg	

�	 Sample y	�tjk� from N
�
�
	�tjk�
z ��	�tjk�

�
	

Then we have an estimate of d�jjk �bd�jjk � �

Tk

TkX
t��

I
h
p
�
y	�tjk�

����	�tjk��j�

�
� p
�
yobsj

����	�tjk��j�

�i
� �	���

where the densities p�j�� are computed via �	���	
If the collection of bd�jjk for j � �� 	 	 	 � n is �roughly centered around �	� without

many extreme values�� this indicates a good model �t Gelfand� Dey� and Chang�

�����	 If d�jjk is small� then y
obs
j does not support model k	 On the other extreme�

an excess of large d�jjk suggest that variation predicted by model k is not supported



���

by the data	

Plots of �CPOjjk vs	 j� constructed separately for each k� can identify which

data points yobsj support or fail to support the model for each k	 The sum of

log�CPOjjk can be used as a measure to compare model �ts see section �	��	 How


ever� the irrelevance of the magnitude of �CPOjjk to model adequacy renders it

useless for validating model assumptions in general	 The statistic bd�jjk �lls this role�
histograms or boxplots of bd��jk � 	 	 	 � bd�njk for each k can be used to assess the overall
�t of the BVNPCP
BHM conditional on each k considered� according to the criteria

discussed in the previous paragraph	

��� Model Comparison �Inference for k


Inference for k� the number of clusters� is possible through a variety of tech


niques	 The aim of this thesis is not to choose a particular model i	e	� a BVN


PCPA� k� n� for a particular k�	 Inference for � will involve contributions from

all candidate models visited by the Markov chains� accounting for the uncertainty

of k implicitly as part of RJMCMC rather than as a secondary Bayesian model

averaging
type procedure as in composite EM analysis	

However� there are a wealth of model comparison methods� few of which ap


pear to have been applied to RJMCMC� and so we feel that an investigation of

model comparison possibilities for RJMCMC is in order	 Furthermore� it will be in


teresting to see how well conclusions from methods which analyze output separately

for each k tally with the marginal distribution of k from the RJMCMC sampler i	e	�

the �visit frequencies� as shown in the posterior histograms of k�	
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�	�	� RJMCMC Model Visit Frequencies

The number of clusters� k� can actually be estimated quite directly from RJM


CMC� using samples from the marginal posterior distribution of k�

bpkjY� � �

T

TX
t��

I
�
k�t� � k

�
	 �	���

The variance of each bpkjY� can be estimated via batch sampling of the indicator
function I

�
k�t� � k

�
an idea apparently implemented by Carlin and Chib ����� in

their non
RJMCMC dimension
changing sampler��

dVar bpkjY�� �
�

T

	
b�

m� � �
m�X
j��

bpjkjY� � bpkjY���
 �	���

where bpjkjY� � mean of Ik��� � k� for jth batch

and b��m� � batch size and number of batches used	

By the Central Limit Theorem quite appropriate here since T is in general very

large��

bpkjY� 

s N

�
pkjY��dVar bpkjY��� 	 �	���

�	�	� Use of Model Adequacy � Checking Criteria

As suggested by Gelfand� Dey� and Chang ������ �CPOjjk and bd�jjk can be
used for model comparison via determination of which models appear to be more

adequate than others as an explanation for the data	 Such comparisons are rather

ad
hoc and are di!cult to interpret on a meaningful scale� but nevertheless useful

at least from a descriptive point of view	

Gelfand� Dey� and Chang ����� suggest� as one possible strategy� favoring

values of k with higher
Pn

j�� log
�CPOjjk or higher

Pn
j��

�bd�jjk � �	���	 The expo

nentiated di�erence

exp

�
nX
j��

log�CPOjjk� �
nX
j��

log�CPOjjk�

�
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may also be used as a surrogate for the Bayes factor� called the �pseudo
Bayes

factor� see Gelfand� ����� p	 ���� in comparing candidate models k� and k�	 An

alternative is to display adjacent boxplots of�CPOjjk or bd�jjk for di�erent k� favoring
k for which �CPOjjk values appear higher and bd�jjk values are more concentrated
around �	�	 This alternative method may be more robust to outliers than use of

a scalar summary	 Still another possibility is to plot �CPOjjk� vs	 �CPOjjk� in a

scatterplot matrix covering all pairs of k values considered	

�	�	� Bayes Factor Approximations

Perhaps the most popular tool for model comparison in any Bayesian frame


work is the Bayes factor see Kass and Raftery ����� for a review�	 The Bayes

factor for comparing two models k� and k� is de�ned as the ratio of marginal like�

lihoods for the two models�

B�� �
p Y jk� �
p Y jk� � 	

Its name is suitable because B�� is the factor by which the prior odds of k� over k�

must be multiplied to obtain the posterior odds�

p k� jY �
p k� jY � �

h
p�Yjk� �p�k��

p�Y�

i
h
p�Yjk� �p�k��

p�Y�

i � �pk��
pk��

� �
p Y jk� �
p Y jk� �

�
	

If the candidate models are taken to be equally likely a priori which they are�

in our case�� then the Bayes factor completely determines the posterior odds of each

pair of candidate models� and thus the posterior distribution of k	 Inference for k

then focuses on estimation of constant multiples of the marginal likelihoods� i	e	�

computation of �cpYjk� for some constant c	 Many varieties of such estimators are
available	 We concentrate on those that are invariant to label
switching see sec


tion �	�	��	 A popular method due to Chib ����� is unfortunately unavailable to

us due to the label
switching problem	 Another� the Laplace
Metropolis estimator



���

see Raftery� ����� section ��	�	�� appears to be intractable due to the inability to

estimate posterior variance matrices involving � and�or Z again� label
switching

being the culprit�	 There are possible alternatives� e	g	� use of an observed infor


mation matrix� but it is not clear how such asymptotic variance estimates should

be computed� or how accurate they would be� given that MLE�s are not produced

by RJMCMC	 Further research is needed to explore the feasibility of a Laplace


Metropolis approach for our model	

Fortunately� all other commonly used marginal likelihood estimators for MCMC

are available to us� and so we can concentrate on these	 Many of these methods

involve computation of a likelihood using posterior samples	 Although the �likeli


hood� for our BVNPCP
BHM is the classi�cation likelihood as speci�ed by �	��

and �	��� there is no reason we cannot use other likelihood forms as well	 Raftery

����� section ��	�� supports the use of the mixture likelihood given by �	��� for

model comparison using MCMC for mixtures	

In the MCMC framework� the likelihood can be treated simply as a function

L��Y� of the model parameters and data	 The marginal likelihood estimators

we will use rely on the availability of samples of the function L��Y� from the

posterior distribution of �	 If L��Y� � p Y j����Z� k �� the BVNPCP
BHM
and classi�cation� likelihood� posterior samples are clearly available directly from

RJMCMC� which implements the Monte Carlo integrationZ
� � �
Z

p Y j����Z� k �p ����Z� k jY �d� d� dZ dk	
If L��Y� � p Y j���� k �� the mixture likelihood� using posterior samples directly
from RJMCMC is analogous to performing the Monte Carlo integrationZ

� � �
Z

p Y j���� k �p ����Z� k jY �d� d� dZ dk	



���

A more direct Monte Carlo integration would beZ
� � �
Z

p Y j���� k �p ���� k jY �d� d� dk�
but since samples of ���� k� from p ����Z� k jY � aremarginally from p ���� k jY ��
RJMCMC does indeed produce valid samples of the mixture likelihood p Y j���� k �
as well	

Two di�erent varieties of marginal likelihood estimators are used	 The �rst in


volves penalized likelihoods� three forms of which we use� the Bayesian Information

Criterion BIC� Schwarz ������� Approximate Weight of Evidence AWE� Ban


�eld and Raftery ������ and Akaike Information Criterion AIC� Akaike ������	

These are all estimators of � log pYjk�  c	 The penalized likelihoods are typically

evaluated at the MLE� but since the MLE is unavailable in RJMCMC� either the

maximum e	g	� Raftery ����� p	 ����� or average e	g	� Carlin and Louis �����

p	 ����� of the posterior likelihood samples can be used	 Since our study of model

comparison procedures for RJMCMC is rather exploratory� we try both approaches	

It seems that use of the mixture likelihood is more appropriate than the clas


si�cation likelihood except for the AWE� which is speci�cally designed to utilize

the classi�cation likelihood�� especially since speci�cation of the dimension of Z is

unclear	 Raftery ����� section ��	�� supports this approach in the mixture model

context� although he cautions that the BIC is not known to be valid for mixturemod


els	 However� Fraley and Raftery ����� cite examples mentioned in section �	�	�

of this thesis� supporting the use of the BIC for mixture models	

The penalties employed by the estimators include a speci�cation of the num


ber of scalar parameters� which for the mixture likelihood is �k  � two scalar

coordinates for each �i� plus ���� ��� and ����	 The two forms of BIC computed



���

from RJMCMC output are

BICmax
k � �max

t
log p

�
Y
�����tjk����tjk�

�
� �k  �� log n �	���

and

BICmean
k � �

�

Tk

TkX
t��

log p
�
Y
�����tjk����tjk�

�
� �k  �� log n	 �	���

The two forms of AIC are

AICmax
k � �max

t
log p

�
Y
�����tjk����tjk�

�
� ��k  �� �	���

and

AICmean
k � �

�

Tk

TkX
t��

log p
�
Y
�����tjk����tjk�

�
� ��k  ��	 �	���

Finally� the two forms of AWE are

AWEmax
k � �max

t
log p

�
Y
�����tjk����tjk��Z�tjk�

�
� �
�
�k  �  

�

�

�
log n �	���

and

AWEmean
k � �

�

Tk

TkX
t��

log p
�
Y
�����tjk����tjk��Z�tjk�

�
� �
�
�k  �  

�

�

�
log n	 �	���

Because we assume equal prior model probabilities equal pk��� posterior

model probability estimates for a set of candidate models fkmin� 	 	 	 � kmaxg can con

structed via�

bpkjY� � exp
�
�
�
��� log p Y jk �  c�

�
Pkmax

q�kmin
exp
�
�
�
��� log p Y jq �  c�

� �	���

where
n
��� log p Y jk �  c�

o
is any of fBICmax

k g� fBICmean
k g� fAICmax

k g� fAICmean
k g�

fAWEmax
k g� or fAWEmean

k g	 This follows because� assuming fkmin� 	 	 	 � kmaxg covers
the set of feasible models�

p k jY � �
p Y jk �pk�

pY�

� p Y jk �pk�Pkmax

q�kmin
p Y jq �pq�

�
exp
�
�
� �� log p Y jk �  c�

�Pkmax

q�kmin
exp
�
�
� �� log p Y jq �  c�

� 	



���

The second type of marginal likelihood estimator used is the importance sam


pling estimator based on the mixture likelihood� which has general form

bpYjk� �
PTk

t��

p��tjk����tjk�jk �pYj��tjk����tjk� �
p���tjk����tjk�jk �PTk

t��

p��tjk����tjk�jk �
p���tjk����tjk�jk �

� �	���

where p	�� is an importance sampling density Newton and Raftery� �����	 If p	��
is chosen to be equal to the posterior p

�
Y
�����tjk����tjk�

�
� then �	��� simpli�es to

using the name given by Newton and Raftery ������

bp�Yjk� �
�� �
Tk

TkX
t��

�

p
�
Y
�����tjk����tjk�

�
���� � �	���

the harmonic mean of the sample of mixture likelihood values� which converges

almost surely to the correct value but does not� in general� satisfy a Gaussian

central limit theorem Raftery� ����� p	 ����	

A more robust version of �	��� is constructed using for p	�� a mixture of
prior and posterior densities�

p	
�
��tjk����tjk� jk

�
� �p

�
��tjk����tjk� jk

�
 �� ��p

�
��tjk����tjk� jY� k

�
�

where � � � � �� preferably small	 To avoid the necessity of simulating from the

prior� Newton and Raftery ����� suggest using all Tk values from the posterior

sample and �imagining that a further
�
Tk
��
�
values of ����� are drawn from the

prior� all with likelihoods �p Y j���� k �� equal to their expected value �p Y jk ����
leading to

bp�Yjk� �
PTk

t��

pYj��tjk����tjk� �
bp	�Yjk�
����pYj��tjk����tjk� �

 
�


��
�
TkPTk

t��
�

bp	�Yjk�
����pYj��tjk����tjk� �
 
 �
��� �Tk
bp	�Yjk�

� �	���

which can be solved iteratively	 The �expected value� of p Y j���� k � means its
expectation under the prior distribution of � and � given k�Z

� � �
Z

p Y j���� k �p ��� jk �d� d� �

Z
� � �
Z

p Y���� jk �d� d�

� p Y jk �	
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We use � � �	� and encounter no convergence problems� the solution to �	��� is

obtained in every case within a handful of iterations	 Unlike bp�Yjk�� bp�Yjk� does
satisfy a Gaussian central limit theorem� in addition to being strongly consistent

Raftery� �����	

Both bp�Yjk� and bp�Yjk� can produce posterior model probability estimates
for fkmin� 	 	 	 � kmaxg� assuming equal priors� via

bpkjY� � bpiYjk�Pkmax

q�kmin
bpiYjq� �	���

for i � � or �	

��� Estimation of � and Isotropy Testing

Two very di�erent approaches to performing inference on the cluster shape�scale

parameter� using RJMCMC output are implemented� highest posterior density in


terval HPDI� calculation and batch sampling
based variance estimation	 For both

approaches we use posterior samples ���� across all k� thus implicitly accounting for

uncertainty in the number of clusters	 We also work with normalized versions of the

�regular� and �anisotropy� parameterizations of �� as discussed in De�nitions �	�	�

and �	�	�� and section �	�	�	

�	�	� HPD Intervals and Tests

For this section we de�ne the notation �j� to denote the jth order statistic of a

sample ���� � f����� 	 	 	 � ��T �g of either a linear or circular parameter	 A ��������

HPD interval for a linear parameter � of a model analyzed via MCMC is de�ned

as the shortest interval containing at least ���� � ��� of the posterior samples�

which is given for a unimodal sample as�

��t	�� � t	  b� � ��T � �c�� �	���



���

where t	 is such that

� t	  b� � ��T � �c�� �t	� � min
�tT�b�����T��c

f� t b�� ��T � �c�� �t�g
and �b�c� denotes �greatest integer less than or equal to� and � � � is on the

order of machine precision	 There are analogous de�nitions for multimodal samples�

but they are not needed in our case because all of our posterior samples turn out

to be unimodal	 Chen and Shao ����� prove that the coverage probability of

�	��� converges almost surely to the correct value	 The HPD interval is considered

superior to the commonly used equal
tail Bayesian credible interval� especially if

the posterior sample is not symmetric Chen and Shao� �����	 It can be used to

construct con�dence intervals for log ���� log ���� z����� log �� log � and log ��� �
log ���	 Note in particular that an HPD interval for log � cannot possibly contain ��

the null value for isotropy	 A valid isotropy test can be conducted� however� using

two HPD intervals for

�c � log ��� � log ���� z�����
and a Bonferroni correction	 As discussed in section �	�	�� a test of H� � �c � � vs	

H� � �c �� � is a test of isotropy for the BVNPCP	 We compute the two achieved
signi�cance levels

ASLVarDi� � � � con�dence level of largest HPD interval for log ��� � log ���
which excludes ��

and

ASLCov � �� con�dence level of largest HPD interval for z����

which excludes ��

and then compute the Bonferroni
corrected p
value of the isotropy test as

p � minf�� �min ASLVarDi�� ASLCov�g 	 �	���

The standard formula �	��� for HPD intervals does not apply for circular



���

parameters e	g	� ��	 To the author�s knowledge� no methods have been previously

proposed to obtain HPD intervals for circular parameters	 It seems perfectly rea


sonable� however� to de�ne a new interval length measure appropriate for a circular

parameter � � �a� b� and construct a HPD interval in the same fashion� except

allowing the interval the possibility of wrapping around b and resuming at a	

De�ne the distance measure ��� as

�i�� �j� �

��� �i�� �j�� if i  j

�i�� a�  b� �j�� � if i � j

and interval notation ��� as

�i�� �j� �

��� �i�� �j�� � if i  j

a� �i�� � �j�� b� � if i � j	
�	���

Also de�ne the operator ��� as

j � T �

��� j� if j � T

j mod T �� if j � T�

which is equivalent to the �mod� operator except that j � j � j	

Then a ���� � ��� HPD interval for � is

�t	� � � t	  b� � ��T � �c�� T � �	���

where t	 is such that

� t	  b�� ��T � �c�� T � � �t	�

� min
�tT

f� t b�� ��T � �c�� T � � �t�g 	
A ���� � ��� HPD interval can be constructed for � using

�
����� 	 	 	 � ��T �

�
with a � ��

� and b �
�
� 	 Caution is advised� however� since there are no established

results regarding the asymptotic coverage probability	
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�	�	� Batch Sampling
Based Con�dence Regions and
Tests

Another approach to estimating a vector or scalar component of � is to as


sume approximate normality of the posterior sample of the component and estimate

its variance via batch sampling	 We caution from the outset that approximate nor


mality has not been rigorously assessed for posterior samples of �c� log ���� log ����

z����� log � or log �� but we implement the batch sampling approach mostly for

investigative purposes	 Since we perform analyses on several simulated data sets

whose true underlying model parameters are known� we can carry out a albeit

small
scale� study of its performance	 We use the normalized parameterizations

of � to make the approximate normality assumption more reasonable	 Most of

the nonparametric posterior density estimates calculated for scalar parameters in

our analyses the primary exception being log �� which is skewed right for isotropic

models� seem to resemble normal curves� at least suggesting our investigation is

worthwhile	

For a scalar linear parameter � e	g	� log ���� log ���� z����� log � or log ���

the posterior variance can be estimated via batch sampling see section �	�	��	 A

very� perhaps� approximate ���� � ��� con�dence interval for � is then

+���� � z���
�

qdVarBS��	 �	���

A two
dimensional approximate ���� � ��� con�dence region for �c can be

constructed using a multivariate batch sampling variance estimate��
+�c����� hdVarBS ��c����i�� �+�c���� � ��

��� ��	 �	���

The deviation of this elliptical region from the null value � suggests the nature

and extent of anisotropy	 The p
value for an isotropy test of H� � �c � � vs	
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H� � �c �� � is given by
P

�
X  �+�c����� hdVarBS ��c����i�� �+�c����� � where X s ��

�	 �	���

Finally� a nonparametric not assuming approximate normality� but neverthe


less quite approximate� �������� con�dence interval can be obtained for �� using
the special version of batch sampling for circular dispersion see section �	�	��	 First

���� is converted to �	��� via �	��	 Then the sample circular mean and batch sam


pling circular dispersion estimate of �	��� are used to produce the con�dence interval

using the ��� notation de�ned in �	�������
+�	��� � arcsin

�
z�
�

qb�BS �	������ mod ���

�
�	���

�
��
+�	���  arcsin

�
z�
�

qb�BS �	������ mod ���

�
	

Then the endpoints c	lo and c
	
hi� say� are back
transformed via �	�� to give a �����

��� con�dence interval clo � chi for �	 Recall that this con�dence interval is ill


de�ned if z�
�

qb�BS �	���� � �� in which case we report that at least +�	��� � �
� �

back
transformed appropriately� is covered	

�	�	� Comments on the Two Approaches

The HPD interval approach makes no assumptions about the form of the poste


rior distribution and is more theoretically sound� and hence our preferred approach	

A drawback of this method is its inability to directly construct multi
dimensional

con�dence regions although componentwise con�dence intervals can certainly be

combined to yield cube
shaped regions� but these may be unnecessarily large and

lead to overly conservative multi
dimensional tests�	

The batch sampling approach was included primarily for this reason� as it

can produce multi
dimensional ellipsoidal con�dence regions and tests incorporat


ing covariances in posterior samples	 However� the distributional approximations
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required are certainly suspect	 Furthermore� there appears to be a serious problem

with over 
estimation of variance in batch sampling for RJMCMC see Chapter �

for examples�	 We have not determined the exact cause� but we have observed

strong negative correlations between batch means� likely the result of di�erent k�s

dominating di�erent batches	 This is a good topic for future research	
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CHAPTER 

IMPLEMENTATION AND RESULTS OF ANALYSES� WITH
COMPARISONS OF METHODS

�� Implementation of RJMCMC Algorithm

For the Redwood data and each of the �� simulated patterns� � chains of the

RJMCMC sampler for the BVNPCP
BHMA�n� see De�nition �	�	� and Algo


rithm �	�	�� were run for ������� sweeps apiece	 Some information was recorded

using all sweeps see section �	��� but due to limitations on storage space� only every

��th sweep was saved	 Originally� only ������� sweeps were run also saving every

��th sweep�� and this was found to be insu!cient for batch sampling the ACF

cuto� of �	�� could not be achieved for some methods�	 Due to the high degree of

autocorrelation� we feel that simulation of longer chains� discarding some sweeps� is

preferable to simulation of shorter chains� saving all sweeps	

Hyperparameter values are displayed in Table �	�	 Values for V speci�ed

in terms of �
m
V ��� the inverse of the prior mean of ���� all represent isotropic

processes� they are chosen to be consistent with the cluster size implied by the true

� model values for the simulated patterns� and according to casual visual inspection

for the Redwood data	 As discussed in section �	�	�� setting m � � makes the prior

for � as uninformative as possible	 We expect the prior to have very little impact

on the behavior of the algorithm	 Rigorous sensitivity analysis would require a large

number of simulations and is saved for future research	

Starting values used for k and � are shown in Tables �	� and �	�	 For chain ��
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Patterns� klo khi m
�
�
m
V ���

��

�
�
m
V ���

��

�
�
m
V ���

��

Redwood � �� � �	���� �	���� �

I
k�
� � �� � �	��� �	��� �

I
k��
� � �� � �	���� �	���� �

Table �	�� Hyperparameter values used for prior speci�cations
in RJMCMC	

�� is initially located at the center of the region	 For chains � and �� starting values

are set to a random sample selected without replacement� of o�spring locations	

Instead of selecting initial values for Z� we implementMZ thenM� andM�� before

starting step � of Algorithm �	�	�	

Chain k ��� ��� ���

� � �	� �	� �

� �� �	��� �	��� �

� �� �	��� �	��� �

Table �	�� Starting values for k
and � used in RJMCMC� Red

wood data	

The starting values were chosen to be over
dispersed� as required by our con


vergence assessment technique	 An upper limit of khi � �� seems reasonable for

all of the patterns	 The result of the analysis performed by Diggle ����� see

section �	�	� and Figure �	�� on a similar Redwood pattern� however� implies the
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Chain k ��� ��� ���

� � �	� �	� �

� �� �	��� �	��� �

� �� �	��� �	��� �

Table �	�� Starting values for k
and � used in RJMCMC� sim

ulated patterns	

presence of approximately �� clusters in our Redwood data set	 Once this was real


ized� we ran a chain with khi � ��� and a starting k of ��	 The value of k fell below

�� within ����� sweeps and remained below �� for the remainder of the �������

sweeps	

The source code for the RJMCMC sampler was written in C  using matrix

and random number libraries authored by Davies ����� and compiled with the

HP
UX CC compiler� version A	��	��� to generate ANSI style code	 Simulations

were run on a Hewlett Packard workstation model B���L running HP
UX version

��	��� which has a ��� MHz PA
����CL CPU and ��� Mb RAM	 Simulation run

times for each chain� range from ��	� to ��	�� hours with a mean of ��	� hours	

Some longer run times resulted from shared usage of computers�	

�� RJMCMC Algorithm Performance and
Convergence Assessment

Table B	� shows acceptance rates for dimension
changing moves� calculated

for each data set from all ������� sweeps from the � chains	 Acceptance rates for

split�combine range from �	��� to �	����� while those for birth�death are consid


erably lower� ranging from �	��� to �	���	 Richardson and Green ����� report
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acceptance rates between �	�� and �	�� in their one
dimensional normal mixture

RJMCMC sampler	 It seems that higher acceptance rates would certainly be desir


able� however� there are currently no established standards for dimension
changing

MCMC samplers	

Table B	� displays occurrence rates for move
disqualifying conditions also

using all ������� sweeps for each data set�	 We de�ne a �move
disqualifying con


dition� as a situation which immediately sets the acceptance probability to �	 The

three types of such occurrences in our sampler are�

�	 a NN� violation in the split move� resulting from an attempt to generate �

new cluster centers� neither of which is the other�s �
Nearest
Neighbor see

De�nition �	�	���

�	 a split or birth attempt when k � khi� and

�	 a combine or death attempt when k � klo	

Since we use klo � �� the third type is uninteresting	 The occurrence of NN�

violations on average� in ��� of split attempts� does not seem excessive	 In very

few cases and� always at the very beginning of each chain� and only for chains

starting at k � khi� was a split or birth move attempted at k � khi� suggesting

that our choice of khi is reasonable	 Note� these occurrences do not imply that

the move would have been accepted if khi were higher� the acceptance probability

in such cases is set to � before any other components are calculated�	

We observed trace plots for each RJMCMC simulation not shown� except

for chain � for the Redwood pattern in Figures D	� � D	�� to make sure that no

anomalies occurred	 In all cases� the value of k settled to its eventual neighborhood

within several hundred sweeps	
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The convergence assessment method of Algorithm �	�	� was applied to the

saved sweeps ������ per chain� in each pattern� for the parameters discussed in

section �	�� with a base batch size b � ��� yielding �� total batches�	 Henceforth

a �sweep� will refer to a saved state for example� �sweep ���� corresponds to the

����th sweep of the original chain�	 Relevant plots are shown in Figures E	� �

E	��	 Convergence appears to be attained remarkably quickly in each case	 In

the numerator
and
denominator trace plots right
hand side of each page�� the two

lines in each pair are practically indistinguishable and stabilize with the possible

exception of Figures E	�b� and E	��b�� to a common value by the ��th batch

most far sooner�	 MPSRF�s are never higher than �	� even for the �rst batch�

which analyzes sweeps ���������� and they stay below �	�� past the ��th batch in

each case	

Although we could justify a diagnosis of convergence at the ��th batch or

even sooner�� we conservatively chose the ��th batch and declared the last ������

sweeps of each chain suitable for inference	 Thus� in terms of section �	�� we have

C � �� Tch � ��� ��� and T � ��� ���	

Programs for convergence assessment were written in S
Plus and implemented

in S
Plus version �	� for Windows	 The run time for each data set was only a few

minutes	

�� BVNPCP�BHM Model Adequacy Assess�
ment

The methods discussed in section �	� were applied to all �� data sets to as


certain whether model assumptions are supported by the data	 For each pattern�

only values of k occurring at a frequency of at least �	��� i	e	� at least �� times�

are considered	 Since all simulated patterns were generated from only one kind of
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model� the BVNPCP
BHM� it is di!cult to assess the performance of these meth


ods	 The most informative evaluation is obtained by observing results for correct

vs	 incorrect values of k for a given data set	 A study of the behavior of the methods

for patterns which deviate from model assumptions would clearly be useful� and is

encouraged in future research	

Chi
square plots for each pattern and k not displayed� constructed at the

mode show no signs of trouble� except for occasional outliers for some values of k

which do not correspond consistently to correct vs	 incorrect k�	 Figures H	� � H	�

display p
values for the � discrepancymeasures used	 P
values fromDCR

�
Yobs�e���jk���

analyzed at each mode only� �uctuate wildly and have no discernible relationship

to k� thus casting doubt on its e�ectiveness	 Those from DCR

�
Yobs���tjk�

�
with

Monte Carlo simulation� are much more stable� indicating trouble in simulated pat


terns only for k � � � � for AI
�
k�
b which is strange� since these are equal or
close to the actual k values�	 For the Redwood pattern� p
values are very high for

low k� implying that for these k� clusters are much smaller than expected under the

model	 Finally� p
values for D�

�
Yobs���tjk�

�
are extremely stable� rarely deviating

far from �	�	 We realize that this discrepancy measure is probably a poor choice�

although it is based on proper intentions of evaluating the conformity of posterior �

samples to the data� the computation of the b� estimate used in D�

�
Yobs���tjk�

�
is

similar to the generation of � from its full conditional distribution in the RJMCMC

sampler the primary di�erence being use of � values vs	 sample cluster means��

and thus is bound to be well
behaved regardless of model appropriateness	

Box plots of �CPOjjk see section �	�	�� values are shown in Figures H	� �

H	�	 For each pattern� distribution of �CPOjjk varies mostly in the upper tail and

consistently shows higher values for higher k	
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The bd�jjk statistic is more useful than �CPOjjk for determining model ade�

quacy	 Box plots of bd�jjk for di�erent k are shown in Figures H	� � H	�	 Histograms
shown in Figure H	� for the Redwood data� provide a more thorough assessment	

For the Redwood pattern� histograms for each k show a mode of bd�jjk around �	�
and an excess of very low values� implying an excess of o�spring very close to clus


ter centers and an excess of isolated o�spring with distant parent cluster centers�

respectively	 This is consistent with a leptokurtic distribution see section �	�	���

which is commonly observed in pollen and seed dispersal	 Box plots and histograms

of bd�jjk for the simulated patterns look reasonable in most cases and very similar
across k for each pattern�� except for AI
�
k��
b� which exhibits behavior similar

to the Redwood pattern	

Programs to compute �CPOjjk and bd�jjk were written in C  and imple


mented similarly to those for the RJMCMC algorithm	 Graphical displays are

achieved with S
Plus programs	 The computations of bd�jjk � DCR

�
Yobs���tjk�

�
and

D�

�
Yobs���tjk�

�
are computer intensive due to a large amount of required Monte

Carlo simulation� but can be performed simultaneously	 Run times were not recorded�

but seemed to average about � hours per data set	

�� Inference for k� RJMCMC and Composite
EM

For the purpose of model comparison in our case� equivalent to inference

for k�� the same k are used as in section �	�	 As mentioned in section �	�	�� model

adequacy criteria can also be used for comparing models	 The discrepancy measures

Figures H	� � H	�� do not seem to favor any values of k over others� except for

the Redwood pattern� where smaller k correspond to a worse �t re�ecting tighter
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clustering than expected under model assumptions�	 The box plots for�CPOjjk� and

especially plots of
Pn

j�� log�CPOjjk Figures H	� � H	��� favor higher k for most

patterns	 We suspect that
Pn

j�� log
�CPOjjk may be too sensitive to extremely low

�CPOjjk values� which do occur in our analyses	 Wherever box plots or histograms

of bd�jjk indicate questionable model �ts� they generally do so for all k and thus do
not appear to be e�ective for model comparison	

The posterior density estimates of k from RJMCMC are shown as histograms

in Figures F	� � F	�� and as interval estimates of model probabilities ��� con�dence

interval for each k� see section �	�	�� in Figures G	� � G	�	 Table M	� far right

column� shows� for each data set� the minimum number of batches used minimum

over k� in computing the variance estimates	

Estimated model probabilities from composite EM see section �	�	�� are

shown in Figures G	� � G	�	 For each pattern� we computed bpkjY� from the

composite EM estimate for all kmin� �� 	 	 	 � kmax ��� where kmin� 	 	 	 � kmax� are k

visited by RJMCMC with frequency  �	���	 Note� k � � was not used�	 Then
we continued to try more values of k until the estimated probabilities for the lowest

four unless k � � had been included� and highest four values were negligible	 For

two patterns� the Redwoods and AI
�
k��
b� values of k higher than those visited

by RJMCMC were given non
negligible probabilities	 To be on the safe side� we

calculated BICEM
k for k � �� 	 	 	 � �� for each of these patterns and observed that no

additional values of k were supported	

Figures G	� � G	� show estimated model probabilities computed from various

marginal likelihood estimates using RJMCMC output see section �	�	��	 The label

�RHarmMn� refers to bp�Yjk�� while �HarmMean� refers to bp�Yjk�	
Note that for some patterns e	g	� AI
�	�
k�
b and AI
�
k�
a�� there is one
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clearly dominant k� but for others� there is more variability	

In general� fbpkjY�g from RJMCMC visit frequencies VF� seems to agree

most closely with those from BICmax
k � second most with BICmean

k which tends

to favor slightly lower k�� somewhat with AWEmean
k and AICmean

k which favor

moderatly higher k�� very little with BICEM
k � AWEmax

k and AICmax
k which favor

much higher k�� and least of all with bp�Yjk� and bp�Yjk� which almost always
favor the highest k�s�	 The RJMCMC visit frequencies almost always place highest

estimated model probabilities on k below the true value in simulated patterns� and

most other methods do this most of the time	 A probable explanation for this is that

methods can be easily �fooled� into treating overlapping clusters as single clusters�

but there is nothing to encourage overestimation of k	

As would be expected� model probability estimates using likelihood averages

favor lower k�s than corresponding versions using likelihood maximums� since the

penalty carries more weight in the presence of smaller likelihoods	 Since AIC has a

lower penalty than BIC� it makes sense that it would prefer higher k	

Estimated model probabilities from composite EM are remarkably similar to

those from AICmax
k � and also quite similar to those from AWEmax

k 	 We suspect that

this is due to the combination of � opposite forces�

�	 composite EM uses a true local� at least� maximum likelihood estimate� while

AICmax
k and AWEmax

k only use estimates from the largest sample likelihoods

observed in RJMCMC output� and

�	 BIC enforces a larger penalty than AIC� and seemingly AWE also	 We an


ticipate that model probability estimates from composite EM would agree
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more with BICmax
k as the number of sweeps in the RJMCMC sampler ap


proaches 
� since higher and higher sample mixture likelihood values will be
encountered� perhaps occasionally approaching the MLE	

The importance sampling marginal likelihood estimates bp�Yjk� and bp�Yjk��
appear to su�er the same fate as

Pn
j�� log�CPOjjk� being sensitive to extremely low

values going into the harmonic mean or� in the case of bp�Yjk�� a slightly robust

i�ed harmonic mean�	 A handful of extremely small mixture likelihood values tend

to occur in most models as ascertained by observing computed values from several

data sets�� producing signi�cant impacts on the harmonic means	 We suspect that

this is the cause of higher k�s being consistently favored by these methods� for higher

k� cluster centers are more numerous and thus more likely to be able to accommodate

isolated o�spring� preventing them from contributing extremely small values to the

mixture likelihood	

Overall� the di�erent methods considered to estimate the number of clusters

exhibit quite di�erent behavior	 A similar conclusion is reached by Raftery �����

section ��	��� who compares the Laplace
Metropolis estimator� bp�Yjk�� another
importance sampling marginal likelihood estimator using a specially constructed

importance density� BIC and AWE for a one
dimensional normal mixture	 He states

that the �Laplace
Metropolis estimator is the only one that seems to be in the right

ballpark	� Most striking perhaps is the fact that composite EM places high proba


bility on values of k that are not supported at all in RJMCMC� for the Redwoods

and AI
�
k��
b	 For both patterns� the Markov chain started at k � �� certainly

has a chance to explore the same possibilities� but quickly moves to lower k values	

RJMCMC samplers consistently spend most of their time visiting k below its true

value in the �� simulated patterns� leading to suspicion that perhaps RJMCMC for
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the BVNPCP
BHM systematically underestimates k in general	

It seems that� surprisingly� the behavior of these various model
comparison

methods is not very predictable from visual assessment of how many clusters there

appear to be� or how well
separated they are	

All marginal likelihood estimators fromRJMCMC bp�Yjk�� bp�Yjk�� BICmax
k �

BICmean
k � AWEmax

k �AWEmean
k � AICmax

k � AICmean
k � are computed in C  programs�

and corresponding model probabilities are computed and displayed in S
Plus	 Com


posite EM estimates for each k� and corresponding BICEM
k � are obtained from

MCLUST�EMCLUST Fraley� ������ a suite of S
Plus and Fortran routines for EM

analysis of mixture models	 Estimated model probabilities from composite EM are

computed and displayed in S
Plus	 Run times are very short several seconds� for

these methods	

�� Inference for �� RJMCMC and Composite
EM

Estimates of various components and parameterizations for � can be con


structed both from RJMCMC output section �	�� and composite EM estimates

section �	�	��� and also used for tests of isotropy	 Output from all post
convergent

sweeps is used in RJMCMC methods	 Information on batch sizes used in RJMCMC

batch sampling methods is displayed in Table M	�	 Figures I	� � I	� show ���� ���

and ��� con�dence regions for �c see �	���� using batch sampling �BS�� and

composite EM methods� and pairs of ��� HPD intervals for the two scalar compo


nents of �c with a joint ��� con�dence level�	 Also shown are associated p
values

of isotropy tests	 The point of isotropy �c � �� is indicated in each plot� and the

true value is indicated in the plot for each simulated data set	 Figures J	� � J	��
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display posterior density estimates from RJMCMC see section �	�	�� and ��� con


�dence intervals from batch sampling and composite EM methods� for the scalar

parameterizations log ���� log ���� z����� log �� log � and � see section �	�	��	 The

true model values are shown for each simulated pattern	

We emphasize that for RJMCMC� the most informative and theoretically

sound output analysis methods are posterior density estimation and HPD intervals	

Normal approximations used to construct con�dence intervals and test statistics for

both batch sampling methods and composite EM analysis are certainly questionable	

However� posterior means from RJMCMC and point estimates from composite EM

easily located on plots as the centers of con�dence regions and intervals� are still

valid� as are variance estimates in composite EM	

One could argue that a presentation of RJMCMC posterior density estimates�

HPD intervals and corresponding isotropy p
values� and composite EM estimates

and associated variances would constitute a su!cient summary of results for anal


ysis of �	 However� since we have a collection of simulated data sets with known

model values� we proceed to implement and discuss inferential results using the dis


tributional approximations	 Although a set of only �� simulated patterns is nowhere

near enough for a proper performance study� we can at least get a general idea of

the behavior of the methods considered	

In con�dence intervals for �� those from batch sampling which are ill
de�ned

are represented with ellipsis � � �� markings see section �	�	��	 For I
k��
b� the
composite EM interval for � covers the entire range and is not shown	

We are hesitant to trust con�dence regions and test results from composite

EM for the Redwoods and AI
�
k��
b since highly separated values of k contribute

to the estimates� casting serious doubt on the validity of the normal approximation
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see section �	�	��	 However� for lack of a better alternative� and in the interest of

comparing the performance of composite EM to that of other methods� we proceed

as usual for these data sets	

The con�dence regions and intervals from composite EM and HPD agree fairly

well in most cases� and those from batch sampling are occasionally similar but usu


ally much wider	 Isotropy � anisotropy is diagnosed correctly by all methods for

all simulated patterns� except batch sampling for AI
�	�
k�
a and AI
�	�
k��
b� in

which ridiculously large con�dence regions are produced	 As mentioned in sec


tion �	�	�� batch sampling appears to frequently over
estimate variances	 Unreason


ably large batch sampling variance estimates tend to occur most in patterns whose

RJMCMC samplers produced high ACF�s investigated for each pattern and showed

for the Redwoods in Figure D	�� and high variability in k these two phenomena

typically occurring together�	

For the Redwood pattern� the isotropy test is strongly rejected by batch sam


pling p � �	������� and HPD intervals p � �� but borderline for composite EM

p � �	�����	 This represents a notable exception to the trend of HPD intervals

and composite EM regions being similar� the variance estimates in composite EM

are much larger due to strong contributions from very di�erent k�s	

True values for �c are contained in ��� con�dence regions in all cases except �

�	 for batch sampling� AI
�	�
k�
b

�	 for composite EM� AI
�	�
k�
a ��� CR contains true �c�� AI
�	�
k�
b� and

AI
�
k�
a ��� CR contains true �c�

�	 for joint HPD intervals� AI
�	�
k�
a although very close�� AI
�	�
k�
b� AI


�	�
k��
b� AI
�
k�
a very close�� and AI
�
k��
a	
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Note� only ��� HPD intervals were computed� so� information for other con�dence

levels for the HPD method is not shown�	

Table �	� shows the number of times true values were included in scalar con


�dence intervals	 There is no �true value� for � in isotropic patterns	 The � in


stances of the failure of HPD intervals to include the true value of log � occur in

the � isotropic patterns� it is of course not possible for a HPD interval for log � to

contain �	

Parameter Batch Sampling Composite EM HPD Interval

log ��� �� � �

log ��� �� � ��

z���� �� �� ��

log � �� �� �

log� �� � �

� � of �� � of �� � of ��

Table �	�� Coverage of true value achieved by ��� con�dence
intervals for simulated patterns	 Entry is number out of �� or
�� in the case of �� patterns in which true value is contained	

The batch sampling intervals almost always include the truth but are unnec


essarily large	 Intervals from composite EM are consistently lower for �size� param


eters log ���� log ���� log �� and log � than corresponding HPD intervals	 This is

probably due to the fact that composite EM favors higher k�s than RJMCMC� and

thus smaller clusters presumably with more variable shape as well�	 Composite
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EM intervals are usually bigger than corresponding HPD intervals for

log ���� log �� and � for �k��� patterns�

and smaller for

log ���� z����� and � for �k�� patterns�	

For the Redwood data� con�dence intervals from composite EM are huge com


pared to HPD intervals� and often larger than those from batch sampling� likely due

to strong contributions from a wide range of k �
�������
��� compared to RJMCMC

�
���	

A brief overall assessment of point estimates b� of � from RJMCMC posterior
means and composite EM analysis is provided in Figures K	� � K	�� which display

bivariate normal contours of the o�spring dispersal distribution drawn to scale with

the boundary� characterized by each b� and by each true � for simulated patterns�	
It is apparent from these plots that RJMCMC consistently produces larger cluster

size estimates than composite EM	 Despite the tendency of RJMCMC to favor low

values of k� its cluster shape�scale point estimates appear quite reasonable very

close to the truth for � simulated patterns� larger size for �� and smaller size for

��	 The composite EM estimates look even better except for AI
�
k��
b� in which

BICEM
k is mysteriously fond of k � ���	

Analogous plots constructed separately for k � ������� and �� are shown in

Figure K	� for the Redwood data	 The relationship between k and estimated cluster

size is quite apparent	 Posterior density estimates for various scalar components of

�� computed separately for each of these k and overlaid with the all
k estimates�

are displayed in Figure L	�	

Source code was written in C  for all batch sampling and HPD interval

calculations	 A suite of S
Plus functions for circular data analysis Davies� ����� is
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used to compute and display circular density estimates	 Composite EM parameter

estimates and variances are computed in S
plus programs written to operate on

output from MCLUST�EMCLUST Fraley� �����	 S
Plus programs were written

to compute all other intervals and tests and to display all graphs	 Run times are

longest for computation of composite EM variance estimates several hours if k  ��
are included�� but would be drastically decreased by conversion to C  	 All other

run times are reasonable seconds or minutes�	
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CHAPTER �

CONCLUSION

��� Summary of New Methods

The composite EM and RJMCMC approaches are� to the author�s knowledge�

the �rst fully developed methods for inference for model parameters of any spatial

cluster process and�or anisotropic point process	

The aim of the EM algorithm applied to mixture models is usually to estimate

the number of components and cluster centers	 Our approach is somewhat the

opposite in that we treat these as nuisance parameters and focus on estimation

of the common �cluster shape�scale parameter� � although we still have several

methods to assess the number of clusters�	 Composite EM Chapter �� is apparently

the �rst method in the �eld of mixture analysis to�

�	 combine estimates of � for di�erent numbers of components into a composite

estimate b� � $���� $���� $�����
�	 compute asymptotic variance estimates directly from the observed information

matrix for � and �� without relying on approximations to the form of the

observed information matrix� or

�	 develop an overall estimate of the variance
covariance matrix of the b� ac


counting for uncertainty in k	

Even if the normal approximation to the distribution of b� is inappropriate� point
estimates and variance estimates are still reasonable	
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The RJMCMC algorithm developed for the BVNPCP
BHMA�n� Chapter ��

is the �rst RJMCMC algorithm capable of modeling mixtures of more than one

dimension ours being two
dimensional�	

The convergence assessment technique developed in Chapter � is the �rst con


vergence assessment method with a solid theoretical foundation for RJMCMC� and

the �rst multivariate technique i	e	� capable of analyzing convergence of param


eter vectors� for any dimension
changing MCMC sampler	 It is applicable to any

RJMCMC sampler with a parameter which retains the same meaning across models	

In RJMCMC output analysis Chapter ��� we develop to the author�s knowl


edge� the �rst usage of batch sampling or HPD intervals to estimate a circular

parameter from any MCMC method	 It is perhaps also the �rst established method

to estimate circular parameters from a MCMC sampler without treating them as

linear	

��� Scope for Future Research

Perhaps the most appropriate next step would be to simulate a much larger

number of point patterns to enable a more thorough study of the performance of

methods developed in this thesis	 The large number of sweeps used in RJMCMC

in this thesis was necessitated only by batch sampling� a much smaller number of

sweeps would su!ce for all other methods	 Inclusion of patterns which deviate in

di�erent ways from model assumptions would help to determine the robustness of

the methods	 A study of the e�ect of smaller or larger samples sizes total number

of o�spring� would also add signi�cantly to understanding of their behavior and

success	

In the composite EM technique� the regularity conditions guaranteeing the
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correct asymptotic distribution of b��k� from the EM algorithm should be checked	

We suspect that they hold e	g	� third
order partial derivatives are known to sat


isfy the appropriate criteria for multivariate normal distributions� a result which is

likely to extend to mixtures of multivariate normals�	 A study of the appropriate


ness or lack thereof� of the normal approximation to the asymptotic distribution

of the composite EM estimate b� is also clearly in order	 Although the agglomer

ative clustering method is considered to generate good starting values for the EM

algorithm� it would be prudent to try a battery of di�erent starting values to check

whether a larger local maximum can be obtained	 Assessment of the accuracy of

BICEM
k in estimating model probabilities is another priority	 Several alternative

EM
type algorithms e	g	 classi�cation EM and stochastic EM� exist and could be

used to develop similar composite methods combining information from separate

analyses by k Celeux� Chauveau� and Diebolt� ����� Diebolt and Ip� ����� Celeux

and Govaert� �����	

For the RJMCMC algorithm� incorporation of some kind of label estimation

method or ordering restriction would allow a greater variety of output analysis

options	 The RJMCMC sampler should be compared with �xed
k MCMC samplers

to see if it provides a bene�cial �tunneling� e�ect i	e	� ability to move between

distant high
probability regions of the parameter space that are separated by valleys

of low density� via dimension
changing jumps�	 Richardson and Green ����� p	

���� report that in previous work in mixture estimation� �xed
k samplers have been

plagued by slow mixing	 They carry out a small experiment for a simple univariate

mixture model which demonstrates that output from a RJMCMC sampler collected

for a particular value of k mixes faster than output from a corresponding �xed
k

sampler	 It would also be interesting to see how inferences using RJMCMC output
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separated by k compare to those from the �xed
k samplers	 Di�erent orderings

of move types can be attempted� to see if any particular orderings a�ect mixing or

output analysis results	 There are numerous possibilities for modi�cation of existing

move types and invention of new ones	 A study of the sensitivity of the results to

speci�cation of the prior distribution should be performed	

The validity of the RJMCMC convergence assessment technique in the absence

of certain ANOVA assumptions especially independence of samples� should be

assessed	 Since convergence seemed to occur very quickly for all examples in this

thesis� a study of the sensitivity of the diagnostics to di�erent types of violations

of convergence would help to de�ne the e�ectiveness of the technique	 It may be

possible to construct additional diagnostics e	g	� using di�erent ratios of mean


squares� to add to the ability to detect convergence failure	

The model adequacy criteria used in RJMCMC were for the most part incon


clusive in assessing the patterns studied in this thesis	 A study of the sensitivity of

these methods to various deviations from model assumptions would help to deter


mine their potential	 Better discrepancy measures could certainly be developed	

For model comparison� it would be desirable to seek an acceptable way to use

a Laplace
Metropolis estimator even in the presence of label
switching� for many

authors� it is the Bayes factor approximation of choice	 Better importance sampling


based marginal likelihood estimators could also be constructed by the use of di�erent

importance
sampling densities	

The mystery of frequent over
estimation of variance by batch sampling meth


ods should de�nitely be analyzed in more detail� we suspect that the cause is negative

autocorrelation at higher lags	 The validity of the normal approximation relied on to
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construct con�dence regions and test statistics should also be assessed	 Perhaps bi�

variate HPD regions using a �
dimensional kernel density estimate computed from

the posterior samples� could be explored� resulting tests and con�dence regions

would likely be less conservative	

Analysis of a larger number of simulated point patterns would be helpful in

determining the coverage probabilities of con�dence regions produced by the di�er


ent methods	 The asymptotic properties of HPD intervals for circular parameters

can also be researched	

There are many possible alterations�extensions to the BVNPCP model con


sidered in this thesis that are bound to yield more widely applicable methods	 An

attempt should be made to account for the e�ects of the boundary of the study re


gion� either by adjusting the model speci�cation or incorporating edge
corrections

into estimators	 Unequal mixing proportions i	e	� possibly di�erent expected num


bers of o�spring per cluster� can easily be modeled� perhaps isolated o�spring would

more easily be accommodated	 Alternatively or in addition�� the model can be ex


panded to allow for �noise� events not belonging to any clusters�� as in Fraley

and Raftery �����	 If more information is available a priori e	g	� probabilistic

assertions about relationships between certain o�spring� certain regions more likely

to contain parent events� etc	�� then a more informative prior could be used	 For

example� genetic data recorded for seedlings can produce prior probabilities of each

pair of seedlings descending from a common parent	 Genetic and spatial data are

usually analyzed separately in the study of population dynamics� the combination

of these two types of data o�ers the prospect of improved ecological inferences	 The

location of a set of potential parent trees in a region perhaps only an unknown frac


tion of which can actually produce seedlings� can provide a mixture of discrete and
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uniform distributions for a prior on �	 Types of dispersal distributions other than

bivariate normal can be modeled� dramatically improving the applicability of the

methods	 For example� a dispersal distribution can be based on Gaussian plumes�

which are typically used to model the �ow of particles from a smokestack in the

presence of a prevailing wind see Thompson and Greenkorn� ����� Pasquill� �����	

Composite EM has a somewhat limited capacity to incorporate these kinds of

extensions due to heavy reliance on closed
form solutions for maximization� asymp


totic variances� etc	� which may be rendered intractable by overly complex models	

However� RJMCMC is a very �exible technique which requires only the quantities

used in Metropolis Hastings moves traditional or reversible jump� to be known

analytically	 As better understanding of convergence assessment methods and va


lidity of various output analysis techniques increases� RJMCMC may become a more

powerful and widely usable tool for analysis of quite complicated variable
dimension

models	
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APPENDIX A

SELECTED PROOFS AND DERIVATIONS
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A�� Proof of Theorem ����

Proof � Consider the PCP observed in a �nite region A	 Assume that h�� is
continuous	

Let

a��b��� 	 	 	 � and �bnd� be all ordered pairs of events in A from di�erent parents

and

c��d��� 	 	 	 � cns�dns� be all ordered pairs of events in A from the same parent

where

nd � �ordered pairs of events in A from di�erent parents�

and

ns � �ordered pairs of events in A from the same parent�	

Note that

ns �

npX
i��

SiSi � ��
where

np � �parents�	

Also de�ne

Nidx� � �o�spring from parent i in region dx�	

As in the proof of Theorem �	�	�� the notation suppresses dependence on A	

Consider two �xed locations x�y � A well in the interior of A so that boundary

e�ects are negligible�	 Then

Ndx�Ndy� �

ndX
j��

�dxaj��dybj�  

nsX
j��

�dxcj��dydj�

and so

��x�y�
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� lim
jdxj�jdyj��

E �Ndx�Ndy��

jdxjjdyj

� lim
A���

��� lim
jdxj�jdyj��

E
hPnd

j�� �dxaj��dybj�  
Pns

j�� �dxcj��dydj�
i

jdxjjdyj

 !"
� lim

A���

��� lim
jdxj�jdyj��

E
hPnd

j�� �dxaj��dybj�
i

jdxjjdyj

 !" A	��

 lim
A���

��� lim
jdxj�jdyj��

E
hPns

j�� �dxcj��dydj�
i

jdxjjdyj

 !" A	��

We can simplify A	�� as follows�

lim
A���

��� lim
jdxj�jdyj��

E
hPnd

j�� �dxaj��dybj�
i

jdxjjdyj

 !"
� lim

A���

�
lim

jdxj�jdyj��

E
�Pnp

i��

Pnp
j���j ��i Nidx�Njdy�

�
jdxjjdyj

�

� lim
A���


lim

jdxj�jdyj��

E �np np � ��E fNidx�Njdy�g�
jdxjjdyj

�

by Lemma �	�	�� np and fNidx�Njdy�g are independent�

and fNidx�Njdy�g are i	i	d	 for i �� j��

� lim
A���


lim

jdxj�jdyj��
E �np np � ���

�
E �Nidx��

jdxj
��

E �Njdy��

jdyj
��

by independence of Ni and Nj�



���

� lim
A���


�jAj��

�
ES

jAj
� �

ES

jAj
��

by stationarity� holding when A	 ���

� lim
A���

�
���

�

� ��

by Theorem �	�	��

We can simplify A	�� as follows�

lim
A���

��� lim
jdxj�jdyj��

E
hPns

j�� �dxcj��dydj�
i

jdxjjdyj

 !"
� lim

A���


�Ens�

�
lim

jdxj�jdyj��

E ��dxcj��dydj��

jdxjjdyj
��

by Lemma �	�	�� ns and f�dxcj��dydj�g are independent�

and f�dxcj��dydj�g are i	i	d	�

� lim
A���

���E
	

npX
i��

SiSi � ��

�� lim

jdxj�jdyj��

E
h
E
n
�dxcj��dydj�

��� poi
jdxjjdyj

�� !"
where p is the location of the common parent of cj and dj�



���

� lim
A���

f�E fnpg� �E fSS � ��g� ��
lim

jdxj�jdyj��

�

jdxjjdyj
Z
A

P
n
cj � dx�dj � dy

��� po �

jAjdp
��

by Lemma �	�	�� np and fSiSi � ��g are independent�

and fSiSi � ��g are i	i	d	�

and since p is uniformly distributed on A� having p	d	f	 �
jAj�

� lim
A���

f��jAjE fSS � ��g� ��� �
jAj lim

jdxj�jdyj��

Z
A

P
n
cj � dx

��� po
jdxj

P
n
dj � dy

��� po
jdyj dp

��
 !"

since the locations of cj and dj are indpendent given p�

� lim
A���

f��E fSS � ��g� ��
lim

jdxj�jdyj��

Z
A


�

jdxj
Z
dx

h u� p� du

�
�

jdyj
Z
dy

h u� p� du

�
dp

��

� �E fSS � ��g �

lim
A���

�Z
A

lim
jdxj�jdyj��

�R
dx h u� p� du

jdxj

R
dy
h u� p� du

jdyj

�
dp

�

interchanging limit and integral� using Lemma �	�	� and

the Bounded Convergence Theorem� see Chung ����� p	 ����



���

� �E fSS � ��g lim
A���

Z
A

h x� p� h y� p� dp

�

by the Fundamental Theorem of Calculus�

see Khuri ����� Theorem �	�	���

� �E fSS � ��g h�x� y�

by the de�nition of h��

Finally� putting it all together� we have

��x�y� � A	��  A	�� � ��  �E fSS � ��gh�x� y�	 �

A�� Derivation of EXn� for X s Poiss��

Suppose X s Poiss�� and n is a positive integer	 Let �t� denote the moment

generating function of Poiss���

�t� � exp f� �expt�� ��g �
and ��m�t�� denote the mth derivative of �t� with respect to t evaluated at t��

��m�t� �
�m�t�

�tm

����
t�

	

Then EXn� � ��n���	

We prove the following lemma by induction�

Lemma A���� For any positive integer n	

��n�t� �
nX
j��

an�j�
j exp f� �expt�� ��  jtg �



���

where

an�j �

��� �� if j � � or j � n

jan���j�  an���j��� otherwise	
A	��

Proof � First note that ����t� � � exp f� �expt�� ��g� and so the lemma holds
for n � �	 Suppose that the lemma holds for n � m� where m  �	 We must show
that it holds for n � m �� i	e	�

��m
��t� �
m
�X
j��

am
��j�
j exp f� �expt�� ��  jtg �

where fam
��jg is given by A	���

��m
��t� �
mX
j��

�
am�j�

j exp f� �expt�� ��  jtg� � expt�  j�

�

mX
j��

�
am�j�

j
� exp f� �expt�� ��  j  ��tg  

jam�j�
j exp f� �expt�� ��  jtg�

� am��� exp f� �expt�� ��  tg  
mX
j��

am�j��  jam�j� �
j expf� �expt�� ��  jtg  

am�m�
m
� exp f� �expt�� ��  m ��tg

� am
���� exp f� �expt�� ��  tg  
mX
j��

am
��j�
j exp f� �expt�� ��  jtg  

am
��m
��
m
� exp f� �expt�� ��  m ��tg

�

m
�X
j��

am
��j�
j exp f� �expt�� ��  jtg 	

Thus the lemma is satis�ed for any integer n  �� and the proof is complete	 �

We can determine EXn� from Lemma A	�	� with t � ��

EXn� � ��n���



���

�
nX
j��

an�j�
j exp f� �exp��� ��  j��g

�

nX
j��

an�j�
j � where fan�jg are de�ned by A	��	

A�� Simpli�cation of Integral in Observed�data
Likelihood �����


Consider the observed
data likelihood of the BVNPCP observed in a region

A � ��� as given by �	���	 First� we haveZZ
A

� � �
ZZ

A

pY�Z��� kj'� n� d�

� pkj'� n�p�� sjk�'� n�pZj�� s� k�'� n�
ZZ

A

� � �
ZZ

A

pYjZ��� k�'� n� d�
since pkj'� n�p�� sjk�'� n�pZj�� s� k�'� n� is constant in � see �	����	����	��
and �	����	 De�ne the notation

�Xi�
	 �

��� Xi� if Si � �

�� otherwise
for any expression Xi depending on i�

and

�Xi�
� �

��� Xi� if Si � �

�� otherwise
for any expression Xi depending on i�

and an alternative indexing scheme for Y�

yi�� 	 	 	 �yik � yi���� yi����
�� 	 	 	 � yik��� yik����

� locations of o�spring from parent i	

The remaining integral can be re
written as�

ZZ
A

� � �
ZZ

A

pYjZ��� k�'� n� d�

�

ZZ
A

� � �
ZZ

A

kY
i��

nY
j��

�hyj � �i��
zji d�



���

�

ZZ
A

� � �
ZZ

A

kY
i��

	
SiY
j��

hyij � �i�


	
d�

�

ZZ
A

� � �
ZZ

A

kY
i��

	
SiY
j��

�
�p

�������� � �����
exp

� ��
������� � �����

�
�
��� yij�� � �i��

�  ��� yij�� � �i��
� � ���� yij�� � �i�� yij�� � �i��

����	
d�

�

ZZ
A

� � �
ZZ

A

kY
i��

���
����� ��p

�������� � �����
�Si exp

� ��
������� � �����

�

�
���

SiX
j��

yij�� � �i��
�  ���

SiX
j��

yij�� � �i��
� �

����

SiX
j��

yij�� � �i�� yij�� � �i��

�
�
	
d�

�
kY
i��

#B$ ��p
�������� � �����

�Si ZZ
A

exp

� ��
������� � �����

�

�
���

�
SiX
j��

y�ij�� � ��i�
SiX
j��

yij��  Si�
�
i�

�
 

���

�
SiX
j��

y�ij�� � ��i�
SiX
j��

yij��  Si�
�
i�

�
�

����

�
SiX
j��

yij��yij�� � �i�

SiX
j��

yij�� � �i�

SiX
j��

yij��  Si�i��i�

��

d�

�	

�
��p

�������� � �����
�n kY

i��

�ZZ
A

exp

� ��
������� � �����

�
������

#$Si 	�i� � �

Si

SiX
j��

yij��


�
 

SiX
j��

y�ij�� �
�

Si

	
SiX
j��

yij��


�%A  

���

#$Si 	�i� � �

Si

SiX
j��

yij��


�
 

SiX
j��

y�ij�� �
�

Si

	
SiX
j��

yij��


�%A �



���

����

�
Si

	
�i� � �

Si

SiX
j��

yij��


	
�i� � �

Si

SiX
j��

yij��



 

SiX
j��

yij��yij�� �

�

Si

	
SiX
j��

yij��


 	
SiX
j��

yij��


��

d�

�	

�
��p

�������� � �����
�n kY

i��

�
exp

� ��
������� � �����

�
������

#$ SiX
j��

y�ij�� �
�

Si

	
SiX
j��

yij��


�%A ���

#$ SiX
j��

y�ij�� �
�

Si

	
SiX
j��

yij��


�%A �

����

�
SiX
j��

yij��yij�� � �

Si

	
SiX
j��

yij��


	
SiX
j��

yij��


��

��

��

Si

q
������ � ����

� ZZ
A

�

��

r�
���
Si

��
���
Si

�
�
�
���
Si

�� exp
� ��
������� � �����

�

������
#$Si

	
�i� � �

Si

SiX
j��

yij��


�%A ���

#$Si
	
�i� � �

Si

SiX
j��

yij��


�%A �

����

�
Si

	
�i� � �

Si

SiX
j��

yij��


	
�i� � �

Si

SiX
j��

yij��


��

d�

�	

�

�� ��p
�������� � �����

�n
�� exp� ��

������� � �����
�

�
���

nX
j��

y�j�  ���

nX
j��

y�j� � ����
nX
j��

yj�yj�

�
	
kY
i��

�
��

Si

q
������ � ����

�	

�

exp

�� ��
������� � �����

kX
i��

#$ �

Si

������
	

SiX
j��

yij��


�
 ���

	
SiX
j��

yij��


�
�

����

	
SiX
j��

yij��


	
SiX
j��

yij��


�����	 kY
i��

P xi � A��	



A	��

where

xi s N

#$� �
Si

SiX
j��

yij���
�

Si

SiX
j��

yij��

��

�
�

Si
�

%A 	



���

A�� Derivation of Asymptotic Variance for the
BVNPCPA� k� n� in Composite EM

In this section we derive expressions for

EZ


��L ��Y�Z� k�

���

������Y� k�
and

EZ

�
�L ��Y�Z� k�

��

�
�L ��Y�Z� k�

��

��������Y� k�
for use in �	��� for the BVNPCPA� k� n� 	 The resulting variance estimatedVarb��k��
can then be obtained by plugging in the EM estimates b��k� � fb��k�

� b��k�g for � andbZ�k� for fezjig see Algorithm �	�	� and the de�nition of ezji below�� and inverting
the matrix as given in �	���	

The following notation is used�

� Number of components in mixture model� k

� Parameters of mixture model�
� � f���g � f���� ���� ���� ���� ���� 	 	 	 � �k�� �k�g

� Observed data o�spring locations��
Y � fy��� y��� 	 	 	 � yn�� yn�g

� Latent data allocations��
Z � fz��� 	 	 	 � zn�� 	 	 	 � z�k� 	 	 	 � znkg

� Conditional expectations�
ezji � E �zji j��Y� k � 	

The complete
data log
likelihood L ��Y�Z� k� is given by �	����	�� and �	��



���

as�

L ��Y�Z� k�

� �n log k � n log���� n

�
log j�j � �

�

kX
i��

nX
j��

zji yj ��i�
�
��� yj � �i�

� �n log k � n log���� n

�
log������ � ������

�

�

kX
i��

nX
j��

zji

�
���

������ � ����
yj� � �i��

�  
���

������ � ����
yj� � �i��

� �

����
������ � ����

yj� � �i��yj� � �i��

�

Because of symmetry� we need not give all expressions in full form	 In what

follows� the shorthand notation ��� � ��� is used to prescribe that all occurrences

of the index ��� should be replaced by ���� and vice
versa	 In other words� ���

becomes ���� ��� becomes ���� yj� becomes yj�� yj� becomes yj�� �j� becomes �j��

and �j� becomes �j�	

First�order partial derivatives�

�L ��Y�Z� k�

����

�
�n���

������� � �����
 

����

������� � �����
�

kX
i��

nX
j��

zji yj� � �i��
�  

����

������� � �����
�

kX
i��

nX
j��

zji yj� � �i��
� �

������

������ � �����
�

kX
i��

nX
j��

zji yj� � �i�� yj� � �i��

�L ��Y�Z� k�

����
�

�L ��Y�Z� k�

����
with ��� � ���



���

�L ��Y�Z� k�

����

�
n���

������ � ����
� ������

������ � �����
�

kX
i��

nX
j��

zji yj� � �i��
� �

������

������ � �����
�

kX
i��

nX
j��

zji yj� � �i��
�  

������  ����

������ � �����
�

kX
i��

nX
j��

zji yj� � �i�� yj� � �i��

�L ��Y�Z� k�

��i�

�
���

������ � ����

kX
i��

nX
j��

zji yj� � �i��� ���
������ � ����

kX
i��

nX
j��

zji yj� � �i��

�L ��Y�Z� k�

��i�
�

�L ��Y�Z� k�

��i�
with ��� � ���

Expressions for EZ

n

�L���Y�Z�k�


��

�����Y� ko�
EZ

�
��L ��Y�Z� k�

��������

������Y� k�
�

n����
�j�j� �

����
j�j�

kX
i��

nX
j��

ezji yj� � �i��
� � �������

j�j�
kX
i��

nX
j��

ezji yj� � �i��
�  

��������
j�j�

kX
i��

nX
j��

ezji yj� � �i�� yj� � �i��

EZ

�
��L ��Y�Z� k�

��������

������Y� k� � EZ

�
��L ��Y�Z� k�

��������

������Y� k�
with ��� � ���



���

EZ

�
��L ��Y�Z� k�

��������

������Y� k�
�

n����
�j�j� �

�������

j�j�
kX
i��

nX
j��

ezji yj� � �i��
� � �������

j�j�
kX
i��

nX
j��

ezji yj� � �i��
�  

���������  �����

j�j�
kX
i��

nX
j��

ezji yj� � �i�� yj� � �i��

EZ

�
��L ��Y�Z� k�

��������

������Y� k�
�

�n������
j�j�  

��������

j�j�
kX
i��

nX
j��

ezji yj� � �i��
�  

���������  �����

j�j�
kX
i��

nX
j��

ezji yj� � �i��
� �

���������  ������

j�j�
kX
i��

nX
j��

ezji yj� � �i�� yj� � �i��

EZ

�
��L ��Y�Z� k�

��������

������Y� k� � EZ

�
��L ��Y�Z� k�

��������

������Y� k�
with ��� � ���

EZ

�
��L ��Y�Z� k�

��������

������Y� k�
�

n������  �����

j�j� � ���������  ������

j�j�
kX
i��

nX
j��

ezji yj� � �i��
� �

���������  ������

j�j�
kX
i��

nX
j��

ezji yj� � �i��
�  

�����������  �����

j�j�
kX
i��

nX
j��

ezji yj� � �i�� yj� � �i��



���

EZ

�
��L ��Y�Z� k�

������i�

������Y� k�
�

�����
j�j�

nX
j��

ezji yj� � �i��  
������

j�j�
nX
j��

ezji yj� � �i��

EZ

�
��L ��Y�Z� k�

������i�

������Y� k� � EZ

�
��L ��Y�Z� k�

������i�

������Y� k�
with ��� � ���

EZ

�
��L ��Y�Z� k�

������i�

������Y� k�
�

�����
j�j�

kX
i��

nX
j��

ezji yj� � �i��  
������

j�j�
kX
i��

nX
j��

ezji yj� � �i��

EZ

�
��L ��Y�Z� k�

������i�

������Y� k� � EZ

�
��L ��Y�Z� k�

������i�

������Y� k�
with ��� � ���

EZ

�
��L ��Y�Z� k�

������i�

������Y� k�
�

�������

j�j�
kX
i��

nX
j��

ezji yj� � �i��� ������  ����

j�j�
kX
i��

nX
j��

ezji yj� � �i��

EZ

�
��L ��Y�Z� k�

������i�

������Y� k� � EZ

�
��L ��Y�Z� k�

������i�

������Y� k�
with ��� � ���



���

EZ

�
��L ��Y�Z� k�

��i���i�

������Y� k� �
����
j�j

nX
j��

ezji

EZ

�
��L ��Y�Z� k�

��i���i�

������Y� k� �
����
j�j

nX
j��

ezji

EZ

�
��L ��Y�Z� k�

��i���i�

������Y� k� �
���
j�j

nX
j��

ezji

EZ

�
��L ��Y�Z� k�

��i���i��

������Y� k� � EZ

�
��L ��Y�Z� k�

��i���i��

������Y� k�
� EZ

�
��L ��Y�Z� k�

��i���i��

������Y� k� � � for i �� i�

Expressions for EZ

�n

L���Y�Z�k�


�

on

L���Y�Z�k�


�

o�������Y� k��
At this stage we require conditional expectations of cross
products of zji for

various j and i	 First� since zji � f�� �g� we have
E
�
z�jij��Y� k

�
� E zjij��Y� k� � ezji 	

Allocations for di�erent o�spring are independent� so that

E zjizj�i�j��Y� k� � E zjij��Y� k�E zj�i�j��Y� k�

� ezjiezj�i� for any i� i� and j � �� j 	

For each o�spring j� only one zji can be �� so that

E zjizji� j��Y� k� � � for any i� �� i 	

So� for example�

E

	�
a

kX
i��

nX
j��

cjizji

��
b

kX
i��

nX
j��

djizji

��������Y� k





���

� ab

��� kX
i��

nX
j��

ezjicjidji  kX
i��

nX
j��

kX
i���

nX
j�
�
j� �
j

ezjiezj�i�cjidj�i�
��� 	

EZ

	�
�L ��Y�Z� k�

����

��
�������Y� k




�
�n����
�j�j�

kX
i��

nX
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A�� Jacobians for Con�dence Intervals � Re�
gions in Composite EM

In this section we give expressions for the Jacobian �	���� before estimates

b� are plugged in��
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�	 log � see De�nition �	�	�� and Fact �	�	���

�	 log� see De�nition �	�	�� and Fact �	�	���

�	 � see De�nition �	�	�� and Fact �	�	���	
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A�� Derivation of Expectations of Variation Es�
timates Used in Convergence Assessment

First� we trivially� have �	��� by Winer ����� p	 ���� and �	��� by Winer

����� p	 ����	

Proof of �����
� Consider ANOVA � in Table �	�	 From Winer ����� p	 ����� we
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Each term can then be simpli�ed�
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Now we derive the expected mean
squares for chain and chain�model� using
terminology from ANOVA � Table �	��	 Several steps in the derivations use the

following ANOVA assumptions and not always with explicit reference��
MX
m��

�m � �� E�c � �� E���cm � �� Ee
r
cm � �� and

all f�cg � f���cmg � fercmg are mutually independent	 A	��

For simplicity of notation� let ercm � ercm���	

First� EMSch�

EMSch �
�

C � �E
�
T

CX
c��

�
+��c� � +����

���

�
�

C � �E
CX
c��

MX
m��

RcmX
r��

�
+��c� � +����

��
�

�

C � �E
CX
c��

MX
m��

RcmX
r��

�
�

T

MX
m���

RcmX
r���

�
�  �c  �m�  ���cm�  er

�

cm�

�
�

�

CT

CX
c���

MX
m���

RcmX
r���

�
� �c�  �m�  ���c�m�  er

�

c�m�

���

�
�

C � �E
CX
c��

MX
m��

RcmX
r��

��
� �c  

�

T

MX
m���

Rcm��m�  
�

T

MX
m���

Rcm����cm�  

�

T

MX
m���

RcmX
r���

er
�

cm�

�
�



���

�
� 

�

C

CX
c���

�c�  
�

CT

MX
m���

R�m��m�  
�

CT

CX
c���

MX
m���

Rc�m����c�m�  

�

CT

CX
c���

MX
m���

RcmX
r���

er
�

c�m�

���

�
�

C � �E
CX
c��

MX
m��

RcmX
r��

��
�c � �

C

CX
c���

�c�

�
 �

�

T

MX
m���

Rcm��m� � �

CT

MX
m���

R�m��m�

�
 �

�

T

MX
m���

Rcm����cm� � �

CT

CX
c���

MX
m���

Rc�m����c�m�

�
 

�
�

T

MX
m���

RcmX
r���

er
�

cm� � �

CT

CX
c���

MX
m���

RcmX
r���

er
�

c�m�

���

�
�

C � �E
CX
c��

MX
m��

RcmX
r��

���
�
�c � �

C

CX
c���

�c�

��

 

�
�

CT

MX
m���

�CRcm� �R�m� ��m�

��

 

�
�

T

MX
m���

Rcm����cm� � �

CT

CX
c���

MX
m���

Rc�m����c�m�

��

 

�
�

T

MX
m���

RcmX
r���

er
�

cm� � �

CT

CX
c���

MX
m���

RcmX
r���

er
�

c�m�

��
 !"

all sums of cross
products are �� by A	���
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At this point we simplify the last portion�

E +e�cm � +e�c� � +e��m  +e�����

� E

	
+e�cm �

�

M

MX
m���

+e�cm� � �

C

CX
c���

+e�c�m  
�

CM

CX
c���

MX
m���

+e�c�m�


�

� E

	
+e�cm�

�  
�

M�

MX
m���

+e�cm���  
�

C�

CX
c���

+e�c�m�
�  

�

C�M�

CX
c���

MX
m���

+e�c�m��� �

�

M
+e�cm�

� � �

C
+e�cm�

�  
�

CM
+e�cm�

�  
�

CM
+e�cm�

� � �

CM�

MX
m���

+e�cm��� �

�

C�M

CX
c���

+e�c�m�
�




� E

�
+e�cm�

�  
�

M
+e�cm�

�  
�

C
+e�cm�

�  
�

CM
+e�cm�

� �
�

M
+e�cm�

� � �

C
+e�cm�

�  
�

CM
+e�cm�

�  
�

CM
+e�cm�

� � �

CM
+e�cm�

� �
�

CM
+e�cm�

�

�
�

�

C�M�

�
CM��  C�M  CM�  CM � �C�M � �CM�  

�CM  �CM � �CM � �CM �E+e�cm��

�
�

C�M�

�
CM�� � C�M � CM�  CM

� ��er�ch�mo�

Rcm

�
C � ��M � ��

RcmCM
��er�ch�mo�

Now� resuming again with EMSch�mo�

EMSch�mo

�
�

C � ��M � ��E
CX
c��

MX
m��

RcmX
r��

��
�

R��mC�

CX
c���

CRc�m �R�m�
�
��
c�

�
 �

�

C�T �

MX
m���

CRcm� �R�m��� ��
m�

�
 �

����cm  
�

T �

MX
m���

R�
cm�����cm�  

�

R��m

CX
c���

R�
c�m���c�m  



���

�

C�T �

CX
c���

MX
m���

R�
c�m�����c�m� � �

T
Rcm���

�
cm �

�

R�m
Rcm���

�
cm  

�

CT
Rcm���

�
cm  

�

TR�m
R�
cm���

�
cm �

�

CT �

MX
m���

R�
cm�����cm� �

�

R�mCT

CX
c���

R�
c�m���c�m

�
 

�
C � ��M � ��

RcmCM
��er�ch�mo�

��

�
�

C � ��M � ��

��
MX
m��

R�m

	
�

R��mC�

CX
c���

CRc�m �R�m�
� ��ch


�
 �

T

CX
c��

	
�

C�T �

MX
m���

CRcm� �R�m��� ��
m�


�
 �

CT��ch�mo T

CX
c��

	
�

T �

MX
m���

R�
cm���ch�mo



 

MX
m��

R�m

	
�

R��m

CX
c���

R�
c�m�

�
ch�mo



 CT

	
�

C�T �

CX
c���

MX
m���

R�
c�m���ch�mo



�

CX
c��

MX
m��

Rcm

�
�

T
Rcm�

�
ch�mo

�
�

CX
c��

MX
m��

Rcm

�
�

R�m
Rcm�

�
ch�mo

�
 

CX
c��

MX
m��

Rcm

�
�

CT
Rcm�

�
ch�mo

�
 

CX
c��

MX
m��

Rcm

�
�

TR�m
R�
cm�

�
ch�mo

�
�

T

CX
c��

	
�

CT �

MX
m���

R�
cm���ch�mo



�

MX
m��

R�m

	
�

R�mCT

CX
c���

R�
c�m�

�
ch�mo


�
 �

CX
c��

MX
m��

Rcm

�
C � ��M � ��

RcmCM
��er�ch�mo�

���

�
�

C � ��M � ��

��
�

C�

CX
c��

MX
m��

CRcm �R�m�
�

R�m
��ch

�
 �

�

C�T

CX
c��

MX
m��

CRcm �R�m�
� ��

m

�
 �

CT��ch�mo 
�

T

CX
c��

MX
m��

R�
cm�

�
ch�mo  



���

CX
c��

MX
m��

R�
cm

R�m
��ch�mo 

�

CT

CX
c��

MX
m��

R�
cm�

�
ch�mo �

�

T

CX
c��

MX
m��

R�
cm�

�
ch�mo � �

CX
c��

MX
m��

R�
cm

R�m
��ch�mo 

�

CT

CX
c��

MX
m��

R�
cm�

�
ch�mo 

�

T

CX
c��

MX
m��

R�
cm

R�m
��ch�mo �

�

CT

CX
c��

MX
m��

R�
cm�

�
ch�mo �

�

CT

CX
c��

MX
m��

R�
cm�

�
ch�mo

�
 �

C � ��M � ����er�ch�mo�

��
�

	
�

C�C � ��M � ��
CX
c��

MX
m��

CRcm �R�m�
�

R�m



��ch  

�

C�T C � ��M � ��
MX
m��

	
CX
c��

CRcm �R�m�
�



��
m  

�

C � ��M � ��

	
CT  

�

T

CX
c��

MX
m��

R�
cm  

CX
c��

MX
m��

R�
cm

R�m
 

�

CT

CX
c��

MX
m��

R�
cm �

�

T

CX
c��

MX
m��

R�
cm � �

CX
c��

MX
m��

R�
cm

R�m
 

�

CT

CX
c��

MX
m��

R�
cm  

�

T

CX
c��

MX
m��

R�
cm

R�m
�

�

CT

CX
c��

MX
m��

R�
cm



��ch�mo  ��er�ch�mo�

�

	
�

C�C � ��M � ��
CX
c��

MX
m��

CRcm �R�m�
�

R�m



��ch  

�

C�T C � ��M � ��
MX
m��

	
CX
c��

CRcm �R�m�
�



��
m  

�

C � ��M � ��

	
CT � C  �

CT

CX
c��

MX
m��

R�
cm �

CX
c��

MX
m��

R�
cm

R�m
 

�

T

CX
c��

MX
m��

R�
cm

R�m



��ch�mo  ��er�ch�mo�



���

Finally� putting it all together�

EWm � EMSer�mo�

�
�

CT �M
E
�
SSer�ch�mo� SSch  SSch�mo

�
�

�

CT �M

�
CT �M�EMSer�ch�mo� C � ��EMSch  

C � ��M � ��EMSch�mo�

�
CT �M�

CT �M
��er�ch�mo� 

C � �
CT �M

�
T��ch 

�

C � ��C�T

MX
m��

	
CX
c��

CRcm �R�m�
�



��
m  	

�

CT

CX
c��

MX
m��

R�
cm



��ch�mo  ��er�ch�mo�

�
 

C � ��M � ��
CT �M

�	
�

C�C � ��M � ��
CX
c��

MX
m��

CRcm �R�m�
�

R�m



��ch  

�

C�T C � ��M � ��
MX
m��

	
CX
c��

CRcm �R�m�
�



��
m  

�

C � ��M � ��

	
CT � C  �

CT

CX
c��

MX
m��

R�
cm �

CX
c��

MX
m��

R�
cm

R�m
 

�

T

CX
c��

MX
m��

R�
cm

R�m



��ch�mo  ��er�ch�mo�

�

�

�
CT �M�  C � �  C � ��M � ��

CT �M

�
��er�ch�mo� 

�

CT �M

	
C � ��T  �

C�

CX
c��

MX
m��

CRcm �R�m�
�

R�m



��ch  

�

CT �M�C�T

MX
m��

	
CX
c��

CRcm �R�m�
�



��
m  

�

CT �M

	
CT  

CX
c��

MX
m��

�
C � �
CT

� C  �

CT
� �

R�m
 
�Rcm

TR�m

�
R�
cm



��ch�mo

� ��er�ch�mo� 

	
C � ��T
CT �M

 
�

C�CT �M�

CX
c��

MX
m��

CRcm �R�m�
�

R�m



��ch  



���

�

C�T � C�MT

MX
m��

	
CX
c��

CRcm �R�m�
�



��
m  	

CT

CT �M
 

��
CT �M

CX
c��

MX
m��

R�
cm

R�m
 

�

CT

CX
c��

MX
m��

CRcm �R�m�
R�
cm

R�m



��ch�mo 	 �



���

APPENDIX B

RJMCMC ALGORITHM PERFORMANCE
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APPENDIX C

POINT PATTERNS� SHOWING TRACKED OFFSPRING
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Figure C	�� Locations of Redwood seedlings� with tracked o�spring marked	
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Figure C	�� Simulated point patterns� with tracked o�spring marked	
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Figure C	� continued�	
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APPENDIX D

SAMPLE TRACE PLOTS� CLUSTER MEMBERSHIPS� AND ACF	S
FOR REDWOOD DATA
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Figure D	�� Trace plots of monitored parameters for a �����
sweep RJMCMC run�
Redwood data	
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Figure D	� continued�	
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Figure E	�� Potential scale reduction factor and maximum eigenvalue plots for
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APPENDIX F

HISTOGRAMS OF K � NUMBER OF CLUSTERS
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Figure F	�� Histogram of k in post
convergent RJMCMC sweeps� Redwood data	
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P�K
 ESTIMATES USING DIFFERENT METHODS
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Figure G	�� P k� estimates using visit frequency from RJMCMC vs	 BIC from EM�
Redwood data	
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Figure G	�� P k� estimates using visit frequency from RJMCMC vs	 BIC from EM�
simulated patterns	
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Figure G	�� P k� estimates using visit frequency from RJMCMC vs	 penalized max
marginal likelihoods and robust harmonic marginal likelihood mean� Redwood data	
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Figure G	�� P k� estimates using visit frequency from RJMCMC vs	 penalized
max marginal likelihoods and robust harmonic marginal likelihood mean� simulated
patterns	



���

k

P
(k

) 
es

tim
at

e

4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o
oo

o

o

o oo o

o

o oo o

o

o

o
o o

o

o o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

k
P

(k
) 

es
tim

at
e

7.0 7.5 8.0 8.5 9.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o
o

o

o o

o

o
o

o

o o

o

o
o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

e� AI
�	�
k�
a f� AI
�	�
k�
b

k

P
(k

) 
es

tim
at

e

7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(k) estimates using different methods

o

o
o

o

o o

o

o
o

o o oo

o

o

o

o
oo o o

o

o

o
o o

o

o

o

o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

k

P
(k

) 
es

tim
at

e

6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(k) estimates using different methods

o
o

o

o

o

o
o oo

o

o

o

o

o o oo o o o o

o

o

oo o o o
o

o

o

o

o o o o
o o

o

o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

g� AI
�	�
k��
a h� AI
�	�
k��
b

Figure G	� continued�	



���

k

P
(k

) 
es

tim
at

e

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o
oo

o

o oo

o

o oo

o

o
o

o

o

o
o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

k
P

(k
) 

es
tim

at
e

5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o

oo

o

o

o

oo o o

o

oo o
o

o

o

o o

o

o

o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

i� AI
�
k�
a j� AI
�
k�
b

k

P
(k

) 
es

tim
at

e

9 10 11 12 13 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o o o

o

o

o
o o oo o o o

o

oo o o o

o

o

o o o o

o

o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

k

P
(k

) 
es

tim
at

e

12 14 16 18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

P(k) estimates using different methods

o

o

o

o

o

o o oo o

o

o
o

o o oo o

o

o o

o

o oo o o o o o
o

o

o o o o

o

o

o

o

RJMCMC visit freq
BIC_max from RJMCMC
AWE_max from RJMCMC
RHarmMn from RJMCMC
AIC_max from RJMCMC

k� AI
�
k��
a l� AI
�
k��
b

Figure G	� continued�	



���

k

P
(k

) 
es

tim
at

e

8 10 12 14 16 18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o
o

o o

o

o
o o o o o o

o

o

o
o o o o o o o o oo o o o o o o o o o

o

oo o o o o o o o o o
o

o

o o o o o o o o o o

o

o

RJMCMC visit frequency
BIC using mean(log-lik) from RJMCMC
AWE using mean(log-lik) from RJMCMC
Harmonic mean of lik from RJMCMC
AIC using mean(log-lik) from RJMCMC

Figure G	�� P k� estimates using visit frequency from RJMCMC vs	 penalized
mean marginal likelihoods and harmonic marginal likelihood mean� Redwood data	



���

k

P
(k

) 
es

tim
at

e

7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o o

o

o o

o

o
o o

o o

o

o

o
o

o oo o o o o

o

o o
o

o

o
o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

k
P

(k
) 

es
tim

at
e

6.0 6.5 7.0 7.5 8.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o

o

o

o
o

oo

o

o

o

o

o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

a� I
k�
a b� I
k�
b

k

P
(k

) 
es

tim
at

e

6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o
o o o o o

o

o
o

o o o o o oo o o o o o
o

o

oo o o o o o
o

o

o

o o o o o o
o

o

o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

k

P
(k

) 
es

tim
at

e

10 11 12 13 14 15

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o

o oo

o

o
o

o oo
o

o

o

o oo o o o o

o

o
o

o

o

o

o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

c� I
k��
a d� I
k��
b

Figure G	�� P k� estimates using visit frequency fromRJMCMC vs	 penalized mean
marginal likelihoods and harmonic marginal likelihood mean� simulated patterns	



���

k

P
(k

) 
es

tim
at

e

4 5 6 7 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o
oo

o

o

o oo o

o

o oo o

o

o

o

o

o

o

o
o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

k
P

(k
) 

es
tim

at
e

7.0 7.5 8.0 8.5 9.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o
o

o

o o

o

o o
o

o

o

o

o
o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

e� AI
�	�
k�
a f� AI
�	�
k�
b

k

P
(k

) 
es

tim
at

e

7 8 9 10 11 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o
o

o
o o

o

o
o o o o

o

o

o

o

o oo o o o

o

o

o o

o

o

o

o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

k

P
(k

) 
es

tim
at

e

6 8 10 12

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o o
o

o

o

o
o oo

o o

o

o
o o oo o o

o

o
o

o
oo o o o o

o

o

o

o o o

o o

o

o

o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

g� AI
�	�
k��
a h� AI
�	�
k��
b

Figure G	� continued�	



���

k

P
(k

) 
es

tim
at

e

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o
oo

o

o oo

o

o oo

o
o

o

o

o

o
o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

k
P

(k
) 

es
tim

at
e

5 6 7 8 9

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o

oo

o

o

o
oo o

o

o

oo o o o

o

o
o

o

o

o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

i� AI
�
k�
a j� AI
�
k�
b

k

P
(k

) 
es

tim
at

e

9 10 11 12 13 14

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o o o

o

o

o o o o
o

o o o

o

oo o o o

o

o

o o o o

o

o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

k

P
(k

) 
es

tim
at

e

12 14 16 18

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

1.
2

P(k) estimates using different methods

o

o

o

o

o
o o oo

o

o

o
o o o oo o

o

o
o o o oo o o o o o o

o

o o o o o

o

o
o

RJMCMC visit freq
BIC_mean from RJMCMC
AWE_mean from RJMCMC
HarmMean from RJMCMC
AIC_mean from RJMCMC

k� AI
�
k��
a l� AI
�
k��
b

Figure G	� continued�	



���

APPENDIX H

MODEL ADEQUACY AND COMPARISON CRITERIA



���

k

P
-v

al
ue

8 10 12 14 16 18

0.
2

0.
4

0.
6

0.
8

1.
0

o

o

o

o

o

o

o

o

o

o

o

o

P-values from discrepancy measures

o o

o o

o
o o

o

o

o
o o

o o o o o o
o o

o

o

o o

Proportion outside 50% CR (mode only)
Proportion outside 50% CR (Monte Carlo)
Accuracy of Sig estimate (Monte Carlo)

Figure H	�� P
values from posterior predictive distribution
based discrepancy mea

sures� Redwood data	



���

k

P
-v

al
ue

7 8 9 10 11 12

0.
2

0.
4

0.
6

0.
8

o

o

o

o

o

o

P-values from discrepancy measures

o

o

o

o o

oo o o o o

o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

k
P

-v
al

ue

6.0 6.5 7.0 7.5 8.0

0.
1

0.
2

0.
3

0.
4

0.
5

o

o

o

P-values from discrepancy measures

o

o

o

o o

o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

a� I
k�
a b� I
k�
b

k

P
-v

al
ue

6 8 10 12

0.
2

0.
4

0.
6

0.
8

1.
0

o

o

o

o

o

o

o o

o

P-values from discrepancy measures

o

o

o
o

o
o

o o

o

o o o o o
o

o

o o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

k

P
-v

al
ue

10 11 12 13 14 15

0.
4

0.
6

0.
8

1.
0

o

o

o

o

o

o

P-values from discrepancy measures

o

o

o

o

o o

o

o o
o

o

o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

c� I
k��
a d� I
k��
b

Figure H	�� P
values from posterior predictive distribution
based discrepancy mea

sures� simulated patterns	



���

k

P
-v

al
ue

4 5 6 7 8

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

o

o

o

o

o

P-values from discrepancy measures

o

o

o o

o

o o o o
o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

k
P

-v
al

ue

7.0 7.5 8.0 8.5 9.0

0.
1

0.
2

0.
3

0.
4

0.
5

o

o

o

P-values from discrepancy measures

o
o

o

o o

o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

e� AI
�	�
k�
a f� AI
�	�
k�
b

k

P
-v

al
ue

7 8 9 10 11 12

0.
2

0.
3

0.
4

0.
5

0.
6

o

o

o

o

o

o

P-values from discrepancy measures

o

o

o

o o

o

o o o

o o
o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

k

P
-v

al
ue

6 8 10 12

0.
2

0.
4

0.
6

0.
8

o

o
o

o

o

o

o

o

P-values from discrepancy measures

o

o

o o
o

o

o
oo

o o o o o
o

o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

g� AI
�	�
k��
a h� AI
�	�
k��
b

Figure H	� continued�	



���

k

P
-v

al
ue

5.0 5.5 6.0 6.5 7.0 7.5 8.0

0.
2

0.
4

0.
6

0.
8

o

o

o

o

P-values from discrepancy measures

o

o
o

o

o
o o o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

k
P

-v
al

ue

5 6 7 8 9

0.
4

0.
6

0.
8

1.
0

o

o

o

o

o

P-values from discrepancy measures

o

o

o o

o

o
o o o

o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

i� AI
�
k�
a j� AI
�
k�
b

k

P
-v

al
ue

9 10 11 12 13 14

0.
2

0.
4

0.
6

0.
8

1.
0

o

o
o

o

o

o

P-values from discrepancy measures

o

o

o

o

o

o

o o o
o

o

o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

k

P
-v

al
ue

12 14 16 18

0.
4

0.
6

0.
8

1.
0

o

o

o o o

o

o

o

P-values from discrepancy measures

o o

o
o o

o
o

o

o

o
o o o

o o o

%Out50%CR(mode)
%Out50%CR(MC)
Acc. of Sig est.(MC)

k� AI
�
k��
a l� AI
�
k��
b

Figure H	� continued�	



���

0
1

2
3

4
5

6

7 8 9 10 11 12 13 14 15 16 17 18

k

C
P

O
Boxplot of CPO

Figure H	�� Boxplots of�CPOjjk values for di�erent k� Redwood data	



���

0
2

4
6

8
10

7 8 9 10 11 12

k

C
P

O

Boxplot of CPO

0
2

4
6

6 7 8

k
C

P
O

Boxplot of CPO

a� I
k�
a b� I
k�
b

0
2

4
6

8

5 6 7 8 9 10 11 12 13

k

C
P

O

Boxplot of CPO

0
2

4
6

10 11 12 13 14 15

k

C
P

O

Boxplot of CPO

c� I
k��
a d� I
k��
b

Figure H	�� Boxplots of�CPOjjk values for di�erent k� simulated patterns	
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���

k

su
m

(lo
g(

C
P

O
))

7 8 9 10 11 12

96
98

10
0

10
2

10
4

10
6

o

o

o

o

o

o

Sum of log(CPO) over offspring

k
su

m
(lo

g(
C

P
O

))

6.0 6.5 7.0 7.5 8.0

99
10

0
10

1
10

2

o

o

o

Sum of log(CPO) over offspring

a� I
k�
a b� I
k�
b

k

su
m

(lo
g(

C
P

O
))

6 8 10 12

10
0

10
5

11
0

11
5

o

o

o o

o

o

o

o

o

Sum of log(CPO) over offspring

k

su
m

(lo
g(

C
P

O
))

10 11 12 13 14 15

92
94

96
98

10
0

10
2

10
4

10
6

o

o

o

o
o

o

Sum of log(CPO) over offspring

c� I
k��
a d� I
k��
b

Figure H	�� Sum of log�CPOjjk for di�erent k� simulated patterns	
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Figure H	�� Boxplots of bd�jjk values for di�erent k� Redwood data	
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APPENDIX I

CONFIDENCE REGIONS AND TESTS FOR ISOTROPY �
ANISOTROPY
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APPENDIX J

POSTERIOR DENSITY ESTIMATES AND COMPONENTWISE
CONFIDENCE INTERVALS FOR SIGMA PARAMETERS
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Figure J	�� Non
parametric Gaussian posterior density estimate and ��� con�dence
intervals for log����� using composite EM� HPDR and normal approximation� Red

wood data	
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Figure J	�� Non
parametric Gaussian posterior density estimate and ��� con�dence
intervals for log����� using composite EM� HPDR and normal approximation� sim

ulated patterns	
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intervals for log����� using composite EM� HPDR and normal approximation� sim

ulated patterns	



���

log(sig22)

de
ns

ity

-6.5 -6.0 -5.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

log(sig22)
de

ns
ity

-6.6 -6.2 -5.8 -5.4

0
1

2
3

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

e� AI
�	�
k�
a f� AI
�	�
k�
b

log(sig22)

de
ns

ity

-7.0 -6.5 -6.0 -5.5

0.
0

0.
5

1.
0

1.
5

2.
0

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

log(sig22)

de
ns

ity

-7.5 -7.0 -6.5 -6.0 -5.5

0.
0

0.
5

1.
0

1.
5

2.
0

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

g� AI
�	�
k��
a h� AI
�	�
k��
b

Figure J	� continued�	



���

log(sig22)

de
ns

ity

-6.5 -6.0 -5.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

log(sig22)
de

ns
ity

-6.5 -6.0 -5.5 -5.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

i� AI
�
k�
a j� AI
�
k�
b

log(sig22)

de
ns

ity

-7.0 -6.5 -6.0 -5.5

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

log(sig22)

de
ns

ity

-8.0 -7.5 -7.0 -6.5 -6.0

0.
0

0.
5

1.
0

1.
5

2.
0

Dens. est. and 95% CI’s for log(sig22)

Density est.
Composite EM
HPD
Normal Aprx

Truth

k� AI
�
k��
a l� AI
�
k��
b

Figure J	� continued�	



���

z(rho12)

de
ns

ity

0.0 0.5 1.0

0
1

2
3

4

Dens. est. and 95% CI’s for z(rho12)

Density estimate
Composite EM
HPDI from RJMCMC
Normal Aprx from RJMCMC

Figure J	�� Non
parametric Gaussian posterior density estimate and ��� con�

dence intervals for z����� using composite EM� HPDR and normal approximation�
Redwood data	



���

z(rho12)

de
ns

ity

-0.8 -0.4 0.0 0.2 0.4 0.6

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

3.
0

Dens. est. and 95% CI’s for z(rho12)

Density est.
Composite EM
HPD
Normal Aprx

Truth

z(rho12)
de

ns
ity

-0.6 -0.2 0.0 0.2 0.4 0.6

0
1

2
3

Dens. est. and 95% CI’s for z(rho12)

Density est.
Composite EM
HPD
Normal Aprx

Truth

a� I
k�
a b� I
k�
b

z(rho12)

de
ns

ity

-0.5 0.0 0.5 1.0

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Dens. est. and 95% CI’s for z(rho12)

Density est.
Composite EM
HPD
Normal Aprx

Truth

z(rho12)

de
ns

ity

-0.4 0.0 0.2 0.4 0.6

0
1

2
3

Dens. est. and 95% CI’s for z(rho12)

Density est.
Composite EM
HPD
Normal Aprx

Truth

c� I
k��
a d� I
k��
b

Figure J	�� Non
parametric Gaussian posterior density estimate and ��� con�
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APPENDIX K

BIVARIATE NORMAL CONTOURS OF ESTIMATED OFFSPRING
DISPERSAL DISTRIBUTION
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Figure K	�� Bivariate normal contours of estimated o�spring dispersal distribution�
using RJMCMC posterior means and composite EM� shown to scale� Redwood data	
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Figure K	�� Bivariate normal contours of estimated o�spring dispersal distribution�
using RJMCMC posterior means and composite EM� shown to scale� simulated
patterns	
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APPENDIX L

POSTERIOR DENSITY ESTIMATES� BY K� REDWOOD DATA
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Figure L	�� RJMCMC posterior density estimates� by k� Redwood data	
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APPENDIX M

TABLES OF RJMCMC DETAILED RESULTS
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Table M	�� Batch sampling details	 Entries are� �batches� batch size� used	
Entries for bpkjY� correspond to minimum �batches over k	



���

REFERENCES

Akaike� H	 �����	 Information theory and an extension of the maximum likeli

hood principle	 In Petrov and Csaki ������ pp	 �������	

Anderson� T	 W	 �����	 An Introduction to Multivariate Statistical Analysis
�nd ed	�	 John Wiley and Sons� New York	

Baddeley� A	 and M%ller� J	 �����	 Nearest
neighbor Markov point processes
and random sets	 International Statistical Review �� ������	

Baddeley� A	 J	 and van Lieshout� M	 N	 M	 �����	 Stochastic geometry models
in high
level vision	 Journal of Applied Statistics ��� �������	

Ban�eld� J	 D	 and Raftery� A	 E	 �����	 Model
based Gaussian and non

Gaussian clustering	 Biometrics ��� �������	

Batschelet� E	 �����	 Circular Statistics in Biology	 Academic Press� New York	

Baudin� M	 �����	 Likelihood and nearest
neighbor distance properties of mul

tidimensional Poisson cluster processes	 Journal of Applied Probability ��� ����
���	

Bene#s� V	� Fendrych� F	� and Such0anek� V	 �����	 On some quantitative methods
for evaluation of anisotropic structures	 Acta Stereologica �� �������	

Bensmail� H	� Celeux� G	� Raftery� A	 E	� and Robert� C	 P	 �����	 Inference
in model
based cluster analysis	 Technical Report ���� Department of Statistics�
University of Washington	

Berger� J	 O	 �����	 Statistical Decision Theory and Bayesian Analysis �nd
ed	�	 Springer
Verlag� New York	

Berger� J	 O	 et al	� eds	 �����	 Bayesian Statistics �� Proceedings of the Fourth
Valencia International Meeting	 April 
����	 
��
	 Oxford University Press� New
York	

Bernardo� J	 M	� Berger� J	 O	� Dawid� A	 P	� and Smith� A	 F	 M	� eds	 �����	
Bayesian Statistics �� Proceedings of the Fifth Valencia International Meeting	
June ���	 
���	 Oxford University Press� New York	



���

Bernardo� J	 M	� Berger� J	 O	� Dawid� A	 P	� and Smith� A	 F	 M	� eds	 �����	
Bayesian Statistics �	 Oxford University Press� New York in press�	

Bernardo� J	 M	� DeGroot� M	 H	� Lindley� D	 V	� and Smith� A	 F	 M	� eds	
�����	 Bayesian Statistics �� Proceedings of the Third Valencia International
Meeting	 June 
��	 
���	 Oxford University Press� Cambridge� MA	

Bollen� K	 A	 and Long� S	 J	� eds	 �����	 Testing Structural Equation Models	
Sage Publications� Newbury Park� CA	

Brooks� S	 P	 �����	 Markov chain Monte Carlo method and its application	
The Statistician �� ������	

Brooks� S	 P	 and Gelman� A	 �����	 General methods for monitoring conver

gence of iterative simulations	 Department of Mathematics� University of Bristol
and Department of Statistics� Columbia University in press�	

Brooks� S	 P	 and Giudici� P	 �����	 Convergence assessment for reversible jump
MCMC simulations	 In Bernardo� Berger� Dawid� and Smith ������ pp	 to
appear�	

Campbell� J	 G	� Fraley� C	� Murtagh� F	� and Raftery� A	 E	 �����	 Linear �aw
detection in woven textiles using model
based clustering	 Pattern Recognition
Letters� to appear�	

Carlin� B	 P	 and Chib� S	 �����	 Bayesian model choice via Markov chain Monte
Carlo methods	 Journal of the Royal Statistical Society	 Series B	 Methodologi�
cal �� �������	

Carlin� B	 P	 and Louis� T	 A	 �����	 Bayes and Empirical Bayes Methods for
Data Analysis	 Chapman and Hall� New York	

Carvajal
Gonzalez� S	� K"onig� D	� Downs� A	 M	� Nguyen� Q	� Vassy� J	� and
Rigaut� J	 P	 �����	 Analysis of histological architecture by point process mod

elling and spatial statistics applied to three
dimensional images from laser scan

ning confocal microscopy	 Acta Stereologica �� �������	

Celeux� G	� Chauveau� D	� and Diebolt� J	 �����	 Stochastic versions of the EM
algorithm� An experimental study in the mixture case	 Journal of Statistical
Computation and Simulation ��� �������	

Celeux� G	 and Govaert� G	 �����	 Gaussian parsimonious clustering models	
Pattern Recognition ��� �������	

Chen� M	 and Shao� Q	 �����	 Monte Carlo estimation of Bayesian credible and
HPD intervals	 Journal of Computational and Graphical Statistics � to appear�	



���

Chib� S	 �����	 Marginal likelihood from the Gibbs output	 Journal of the
American Statistical Association ��� ���������	

Chung� K	 L	 �����	 A Course in Probability Theory �nd ed	�	 Academic Press�
San Diego	

Cowles� M	 K	 and Carlin� B	 P	 �����	 Markov chain Monte Carlo convergence
diagnostics� a comparative review	 Journal of the American Statistical Associa�
tion ��� �������	

Crawford� T	 J	 �����	 What is a population/ In Sharrocks ������ pp	 �������	

Cruz
Orive� L	 M	� Hoppeler� O	 M	� and Weibel� E	 R	 �����	 Stereological anal

ysis of anisotropic structures using directional statistics	 Applied Statistics ���
�����	

Dasgupta� A	 and Raftery� A	 E	 �����	 Detecting features in spatial point pro

cesses with clutter via model
based clustering	 Journal of the American Statistical
Association ��� �������	

Davies� R	 �����	 NEWMAT�NEWRAN Matrix and Random Number Genera

tor C  Libraries	 New Zealand	

Davies� S	 �����	 Software for Circular Data Analysis	 CSIRO� Australia	

Dempster� A	 P	� Laird� N	 M	� and Rubin� D	 B	 �����	 Maximum likelihood
from incomplete data via the EM algorithm	 Journal of the Royal Statistical
Society	 Series B	 Methodological ��� ����	

Diebolt� J	 and Ip� E	 H	 S	 �����	 Stochastic EM� method and application	 In
Gilks� Richardson� and Spiegelhalter ������ Chapter ��� pp	 �������	

Diebolt� J	 and Robert� C	 P	 �����	 Estimation of �nite mixture distributions
through Bayesian sampling	 Journal of the Royal Statistical Society	 Series B	
Methodological ��� �������	

Diggle� P	 J	 �����	 Robust density estimation using distance methods	 Biomet�
rika ��� �����	

Diggle� P	 J	 �����	 On parameter estimation for spatial point processes	 Journal
of the Royal Statistical Society	 Series B	 Methodological ��� �������	

Diggle� P	 J	 �����	 Statistical Analysis of Spatial Point Patterns	 Academic
Press� New York	

Ecker� M	 D	 and Gelfand� A	 E	 �����	 Modeling and inference for geometrically
anisotropic spatial data in press�	



���

Fisher� N	 I	 �����	 Statistical Analysis of Circular Data	 Cambridge University
Press� Cambridge	

Fisher� N	 I	 and Lee� A	 J	 �����	 A correlation coe!cient for circular data	
Biometrika �� �������	

Fraley� C	 �����	 MCLUST�EMCLUST Software	 Department of Statistics�
University of Washington	

Fraley� C	 �����	 Algorithms for model
based Gaussian hierarchical clustering	
SIAM Journal on Scienti�c Computing ��� �������	 to appear�	

Fraley� C	 and Raftery� A	 E	 �����	 How many clusters/ Which clustering
method/ Answers via model
based cluster analysis	 Technical Report ���� De

partment of Statistics� University of Washington	

Friedman� H	 P	 and Rubin� J	 �����	 On some invariant criteria for grouping
data	 Journal of the American Statistical Association ��� ���������	

Gelfand� A	 E	 �����	 Model determination using sampling
based methods	 In
Gilks� Richardson� and Spiegelhalter ������ Chapter �� pp	 �������	

Gelfand� A	 E	� Dey� D	 K	� and Chang� H	 �����	 Model determination using
predictive distributions with implementation via sampling
based methods	 In
Berger et al	 ������ pp	 �������	

Gelfand� A	 E	 and Smith� A	 F	 M	 �����	 Sampling
based approaches to cal

culating marginal densities	 Journal of the American Statistical Association ���
�������	

Gelman� A	� Carlin� J	 B	� Stern� J	 S	� and Rubin� D	 B	 �����	 Bayesian Data
Analysis	 Chapman and Hall� New York	

Gelman� A	 and Rubin� D	 B	 �����	 Inference from iterative simulations using
multiple sequences	 Statistcal Science ��� �������	

Geman� S	 and Geman� D	 �����	 Stochastic relaxation� Gibbs distributions and
the Bayesian restoration of images	 IEEE Transactions on Pattern Analysis and
Machine Intelligence PAMI��� �������	

Geweke� J	 �����	 Evaluating the accuracy of sampling
based approaches to the
calculation of posterior moments	 In Berger et al	 ������ pp	 �������	

Geyer� C	 J	 and M%ller� J	 �����	 Simulation procedures and likelihood inference
for spatial point processes	 Scandanavian Journal of Statistics ��� �������	



���

Gilks� W	 R	 �����	 Discussion contribution	 In Richardson and Green ������
pp	 �������	

Gilks� W	 R	� Richardson� S	� and Spiegelhalter� D	 J	� eds	 �����	 Markov Chain
Monte Carlo in Practice	 Chapman and Hall� New York	

Gordon� A	 D	 �����	 Classi�cation	 Chapman and Hall� New York	

Granville� V	 and Smith� R	 L	 �����	 Clustering and Neyman
Scott process
parameter simulation via Gibbs sampling	 Statistical Laboratory� University of
Cambridge in press�	

Green� P	 J	 �����	 Reversible jump Markov chain Monte Carlo computation
and Bayesian model determination	 Biometrika ��� �������	

Grenander� U	 and Miller� M	 I	 �����	 Representations of knowledge in complex
systems	 Journal of the Royal Statistical Society	 Series B	 Methodological ���
�������	

Grimmet� G	 R	 and Stirzaker� D	 R	 �����	 Probability and Random Processes
�nd ed	�	 Oxford University Press Inc	� New York	

Gruet� M	� Philippe� A	� and Robert� C	 P	 �����	 MCMC control spreadsheets
for exponential mixture estimation	 INRA� Jouy
en
Josas in press�	

Hastings� W	 K	 �����	 Monte Carlo sampling methods using Markov chains
and their applications	 Biometrika �� ������	

Johnson� R	 A	 and Wichern� D	 W	 �����	 Applied Multivariate Statistical
Analysis �rd ed	�	 Prentice Hall� Englewood Cli�� NJ	

Kass� R	 E	 and Raftery� A	 E	 �����	 Bayes factors	 Journal of the American
Statistical Association ��� �������	

Kelly� F	 P	 and Ripley� B	 D	 �����	 A note on Strauss�s model for clustering	
Biometrika ��� �������	

Khuri� A	 I	 �����	 Advanced Calculus with Applications in Statistics	 Wiley�
New York	

K"onig� D	 and Ohser� J	 �����	 On the estimation of second
order and further
characteristics of random planar points structures	 Acta Stereologica � ����	

K"onig� D	 and Schmidt� V	 �����	 Directional distributions for multi
dimension

al random point processes	 Communications in Statistics � Stochastic Models ��
�������	



���

Lauritzen� S	 L	� Dawid� A	 P	� Larsen� B	 N	� and Leimer� H	
G	 �����	 Inde

pendence properties of directed Markov �elds	 Networks ��� �������	

Lauritzen� S	 L	 and Spiegelhalter� D	 J	 �����	 Local computations with prob

abilities on graphical structures and their application to expert systems with
discussion�	 Journal of the Royal Statistical Society	 Series B	 Methodological ���
�������	

Lavine� M	 and West� M	 �����	 A Bayesian method for classi�cation and dis

crimination	 The Canadian Journal of Statistics ��� �������	

Lawson� A	 �����	 Discussion contribution on The Gibbs sampler and other
Markov chain Monte Carlo methods	 Journal of the Royal Statistical Society	
Series B	 Methodological ��� �����	

Lawson� A	 B	 ����a�	 Markov chain Monte Carlo methods for spatial cluster
processes	 In Meyer and Rosenberger ������ pp	 �������	

Lawson� A	 B	 ����b�	 MCMC methods for putative pollution source problems
in environmental epidemiology	 Statistics in Medicine ��� ���������	

Lehmann� E	 L	 �����	 Theory of Point Estimation	 John Wiley and Sons� New
York	

Leroux� M	 �����	 Consistent estimation of a mixing distribution	 The Annals
of Statistics ��� ���������	

Lewis� P	 A	 W	� ed	 �����	 Stochastic Point Processes� Statistical Analysis	
Theory	 and Applications	 Wiley
Interscience� New York	

Louis� T	 A	 �����	 Finding the observed information matrix when using the EM
algorithm	 Journal of the Royal Statistical Society	 Series B	 Methodological ���
�������	

Mardia� K	 V	 �����	 Statistics of Directional Data	 Academic Press� New York	

Mardia� K	 V	� Kent� J	 T	� and Bibby� J	 M	 �����	 Multivariate Analysis	
Academic Press� Inc	� London	

McLachlan� G	 J	 and Basford� K	 E	 �����	 Mixture Models� Inference and
Applications to Clustering	 Marcel Dekker� New York	

Meng� X	 and Rubin� D	 B	 �����	 Using EM to obtain asymptotic variance

covariance matrices� the SEM algorithm	 Journal of the American Statistical
Association ��� �������	



���

Mengersen� K	 L	� Robert� C	 P	� and Guihenneuc
Jouyaux� C	 �����	 MCMC
convergence diagnostics� a �reviewww�	 CREST
INSEE� Paris in press�	

Metropolis� N	� Rosenbluth� A	 W	� Rosenbluth� M	 N	� Teller� A	 H	� and Teller�
E	 �����	 Equations of state calculations by fast computing machines	 Journal
of Chemical Physics ��� ���������	

Meyer� M	 M	 and Rosenberger� J	 L	� eds	 �����	 Proceedings of the ��th Sym�
posium on the Interface	 Pittsburgh	 PA	 June �
���	 
���� Volume �� of Statis�
tics and manufacturing with subthemes in environmental statistics	 graphics and
imaging � computing science and statistics	 Interface Foundation of North Amer

ica� Fairfax� VA	

Mugglestone� M	 A	 and Renshaw� E	 ����a�	 The exploratory analysis of biviari

ate spatial point patterns using cross
spectra	 EnvironMetrics � �������	

Mugglestone� M	 A	 and Renshaw� E	 ����b�	 A practical guide to the spectral
analysis of spatial point processes	 Computational Statistics and Data Analy�
sis ��� �����	

Mukerjee� S	� Feigelson� E	 D	� Babu� G	 J	� Murtagh� F	� Fraley� C	� and Raftery�
A	 �����	 Three types of Gamma ray bursts	 Technical report� Department of
Astronomy and Astrophysics� Pennsylvania State University	

Nelder� J	 A	 and Mead� R	 �����	 A simplex method for function minimization	
The Computer Journal � �������	

Newton� M	 A	 and Raftery� A	 E	 �����	 Approximate Bayesian inference with
the weighted likelihood bootstrap	 Journal of the Royal Statistical Society	 Series
B	 Methodological ��� ����	

Neyman� J	 and Scott� E	 L	 �����	 Statistical approach to problems of cos

mology	 Journal of the Royal Statistical Society	 Series B	 Methodological ���
����	

Neyman� J	 and Scott� E	 L	 �����	 Processes of clustering and applications	 In
Lewis ������ pp	 �������	

Nobile� A	 �����	 Discussion contribution	 In Richardson and Green ������ pp	
���	

Ohser� J	 and Stoyan� D	 �����	 On the second
order and orientation analysis
of planar stationary point processes	 Biometrical Journal ��� �������	

Olsson� D	 M	 and Nelson� L	 S	 �����	 The Nelder
Mead simplex procedure for
function minimization	 Technometrics � �����	



���

Pasquill� F	 �����	 Atmospheric Di�usion� The Dispersion of Windborne Mate�
rial from Industrial and other Sources �nd ed	�	 Ellis Horwood Limited� Chich

ester	

Patil� G	 P	� Pielou� E	 C	� and Waters� W	 E	� eds	 �����	 Statistical Ecology�
Volume �	 Pennsylvania State University Press� University Park	

Petrov� B	 N	 and Csaki� F	� eds	 �����	 �nd International Symposium on Infor�
mation Theory	 Akademiai Kiado� Budapest	

Phillips� D	 B	 and Smith� A	 F	 M	 �����	 Bayesian model comparison via
jump di�usions	 In Gilks� Richardson� and Spiegelhalter ������ Chapter ��� pp	
�������	

Press� W	 H	� Flannery� B	 P	� Teukolsky� S	 A	� and Vetterling� W	 T	 �����	
Numerical Recipes in C� The Art of Scienti�c Computing	 Cambridge University
Press� New York	

Raftery� A	 E	 �����	 Bayesian model selection in structural equation models	
In Bollen and Long ������ Chapter �� pp	 �������	

Raftery� A	 E	 �����	 Hypothesis testing and model selection	 In Gilks� Rich

ardson� and Spiegelhalter ������ Chapter ��� pp	 �������	

Richardson� S	 and Green� P	 J	 �����	 On Bayesian analysis of mixtures with an
unknown number of components	 Journal of the Royal Statistical Society	 Series
B	 Methodological ��� �������	

Ripley� B	 D	 �����	 The second
order analysis of stationary point processes	
Journal of Applied Probability ��� �������	

Ripley� B	 D	 �����	 Modelling spatial patterns�	 Journal of the Royal Statistical
Society	 Series B	 Methodological ��� �������	

Ripley� B	 D	 �����	 Spatial Statistics	 Wiley� New York	

Ripley� B	 D	 �����	 Stochastic Simulation	 John Wiley and Sons� New York	

Ripley� B	 D	 �����	 Statistical Inference for Spatial Processes	 Cambridge Uni

versity Press� Cambridge	

Robert� C	 P	 �����	 Discussion contribution	 In Richardson and Green ������
pp	 �������	

Robert� C	 P	 and Mengersen� K	 L	 �����	 Reparameterisation issues in mixture
modelling and their bearing on MCMC algorithms	 CREST� INSEE� Paris in
press�	



���

Robert� C	 P	� Ryden� T	� and Titterington� D	 M	 �����	 Convergence controls
for MCMC algorithms� with applications to hidden Markov chains	 CREST

INSEE� Paris in press�	

Robert� C	 P	 and Titterington� D	 M	 �����	 Reparameterisation strategies for
hidden Markov models and Bayesian approaches to maximum likelihood estima

tion	 Statistics and Computing� to appear�	

Roberts� G	 O	 �����	 Markov chain concepts related to sampling algorithms	
In Gilks� Richardson� and Spiegelhalter ������ Chapter �� pp	 �������	

Roeder� K	 and Wasserman� L	 �����	 Practical Bayesian density estimation
using mixtures of normals	 Journal of the American Statistical Association ���
�������	

Rubin� D	 B	 �����	 Using the SIR algorithm to simulate posterior distributions	
In Bernardo� DeGroot� Lindley� and Smith ������ pp	 �������	

Schwarz� C	 �����	 Estimating the dimension of a model	 Annals of Statistics ��
�������	

Sharrocks� B	 A	� ed	 �����	 Evolutionary Ecology� the ��rd Symposium of the
British Ecological Society	 Blackwell Scienti�c� Oxford	

Spiegelhalter� D	 J	� Best� N	 G	� Gilks� W	 R	� and Inskip� H	 �����	 Hepatitis B�
a case study in MCMC methods	 In Gilks� Richardson� and Spiegelhalter ������
Chapter �� pp	 �����	

Stanford� J	 L	 and Vardeman� S	 B	� eds	 �����	 Statistical Methods for Physical
Sciences� Volume �� of Methods of Experimental Physics	 Academic Press� San
Diego	

Stephens� M	 �����	 Bayesian methods for mixtures of normal distributions	 Ph	
D	 thesis� University of Oxford	

Stoyan� D	 �����	 Describing the anisotropy of marked planar point processes	
Statistics ��� �������	

Stoyan� D	 �����	 Statistical estimation of model parameters of planar Neyman

Scott cluster processes	 Metrika ��� �����	

Stoyan� D	 and Bene#s� V	 �����	 Anisotropy analysis for particle systems	 Jour�
nal of Microscopy ������ �������	

Stoyan� D	 and Stoyan� H	 �����	 Fractals	 Random Shapes and Point Fields	
John Wiley and Sons� New York	



���

Strauss� D	 J	 �����	 A model for clustering	 Biometrika ��� �������	

Taylor� H	 M	 and Karlin� S	 �����	 An Introduction to Stochastic Modeling
Revised ed	�	 Academic Press� San Diego	

Thompson� V	 L	 and Greenkorn� R	 A	 �����	 Non
gaussian dispersion in model
smokestack plumes	 AIChE Journal ��� �������	

Winer� B	 J	 �����	 Statistical Principles in Experimental Design �nd ed	�	
McGraw
Hill Book Company� Inc	� New York	

Wright� S	 �����	 Isolation by distance under diverse systems of mating	 Genet�
ics ��� �����	

Wright� S	 �����	 The Theory of Gene Frequencies� Volume � of Evolution and
the Genetics of Populations	 University of Chicago Press� Chicago	

Wu� C	 F	 J	 �����	 On the convergence properties of the em algorithm	 Annals
of Statistics ��� ������	

Zimmerman� D	 L	 �����	 Statistical analysis of spatial data	 In Stanford and
Vardeman ������ Chapter ��� pp	 �������	


