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Abstract

This presentation describes the steps involved in per-
forming sample size analyses for a variety of linear
models, both univariate and multivariate. As an an-
alyst you must gather and synthesize the information
needed, but you should be able to rely on the ana-
lytical tools to accommodate the numerous ways in
which you can characterize and solve problems. Ex-
amples illustrate these principles and review relevant
methods. User-written, SAS  software-based pro-
grams already handle a wide variety of problems in
linear models. Now, SAS Institute itself is developing
software that will handle a rich array of sample size
analyses, including all those discussed in this paper.

Introduction

Power and sample size computations for linear mod-
els present a level of complexity greater than that re-
quired for simple hypothesis tests. A number of steps
are involved to gather the required information to per-
form these computations. After settling on a clear re-
search question, the analyst must (1) define the study
design, (2) posit a scenario model, a mathematical
model proposing a general explanation for the nature
of the data to be collected, and (3) make specific con-
jectures about the parameters of that model, the mag-
nitudes of the effects and variability. Because devel-
oping the scenario model is typically a technically dif-
ficult and subjective process, various strategies and
simplifying formulas exist to make matters more feasi-
ble, and software for sample size analysis should ex-
ploit them. Once the scenario modeling is done, you
must still (4) delineate the primary statistical methods
that will best address the research question. Finally,
the (5) aim of assessment must be clearly expressed
to ensure that the power and sample size computa-
tions accomplish the intended goal in study planning.
In hypothesis testing, you typically want to compute
the powers for a range of sample sizes or vice-versa.
All of this work has strong parallels to ordinary data
analysis. The section “Components of a Sample Size
Analysis” explains these steps in more detail.

User-developed SAS-based applications, such as
UnifyPow (O’Brien 1998) and the SAS/IML program
of Keyes and Muller (1992), already handle a wide
variety of problems in linear models. SAS Institute is
developing new software for power and sample size
analyses to cover the methods discussed in this pa-
per, along with a variety of other models discussed in
Castelloe (2000).

This paper describes different strategies for power
and sample size analysis for linear models in a series
of examples, starting with the t-test and progressing
through one-way analysis of variance (ANOVA), mul-
tiple regression, and multi-way ANOVA. In each ex-
ample, you will first learn about the specific ingredi-
ents required for the power or sample size computa-
tion for the linear model being considered. Then the
example will proceed to illustrate the implementation
of a power or sample size analysis following the five-
component strategy. Later sections describe unified
approaches for multivariate models with fixed effects
and suggest guidelines for extensions such as mul-
tiple comparisons, mixed models, and retrospective
analyses.

A Review of Power Concepts

Before explaining more about the five components of
a sample size analysis and proceeding through ex-
amples in linear models, a brief review of terminology
used in power and sample size analysis is in order.
Refer to Castelloe (2000) for a more thorough treat-
ment of these concepts.

In statistical hypothesis testing, you typically express
the belief that some effect exists in a population by
specifying an alternative hypothesis H1. You state
a null hypothesis H0 as the assertion that the effect
does not exist and attempt to gather evidence to re-
ject H0 in favor of H1. Evidence is gathered in the
form of sample data, and a statistical test is used to
assess H0. If H0 is rejected but there really is no ef-
fect, this is called a Type I error. The probability of
a Type I error is usually designated “alpha” or �, and
statistical tests are designed to ensure that � is suit-
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ably small (for example, less than 0.05).

If there really is an effect in the population but H0 is
not rejected in the statistical test, then a Type II er-
ror has been made. The probability of a Type II er-
ror is usually designated “beta” or �. The probabil-
ity 1 � � of avoiding a Type II error, that is, correctly
rejecting H0 and achieving statistical significance, is
called the power. An important goal in study planning
is to ensure an acceptably high level of power. Sam-
ple size plays a prominent role in power computations
because the focus is often on determining a sufficient
sample size to achieve a certain power, or assessing
the power for a range of different sample sizes. Be-
cause of this, terms like power analysis, sample size
analysis, and power computations are often used in-
terchangeably to refer to the investigation of relation-
ships among power, sample size, and other factors
involved in study planning.

Components of a Sample Size Analysis

Even when the research questions and study design
seem straightforward, the ensuing sample size analy-
sis can seem technically daunting. It is often helpful
to break the process down into five components:

Study Design: What is the structure of the planned
design? This must be clearly and completely spec-
ified. What groups and treatments (“cells” and “fac-
tors” of the design) are going to be assessed, and
what will be the relative sizes of those cells? How
is each case going to be studied, i.e., what are the
primary outcome measures (“dependent variables”),
and when will they be measured? Will covariates be
measured and included in the statistical model?

Scenario Model: What are your beliefs about pat-
terns in the data? Imagine that you had unlimited time
and resources to execute the study design, so that
you could gather an “infinite data set.” Characterize
that infinite data set as best you can using a mathe-
matical model, realizing that it will be a simplification
of reality. Alternatively, you may decide to construct
an “exemplary” data set that mimics the infinite data
set. However you do this, your scenario model should
capture the key features of the study design and the
main relationships among the primary outcome vari-
ables and study factors.

Effects & Variability: What exactly are the “signals
and noises” in the patterns you suspect? Set spe-
cific values for the parameters of your scenario model,
keeping at most one unspecified. It is often enlighten-
ing to consider a variety of realistic possibilities for the
key values by performing a sensitivity analysis. Alter-
natively, construct two or three exemplary data sets
that capture the competing views on what the infinite

data set might look like. For linear models and their
extensions an important component is the “residual”
term that captures unexplained variation. The stan-
dard deviation (SD) of this term plays a critical role in
sample size analysis. What is this value? A sensitivity
analysis is usually called for in positing SD.

Statistical Method: How will you cast your model in
statistical terms and conduct the eventual data anal-
ysis? Define the statistical models and procedures
that will be used to embody the study design and esti-
mate/test the effects central to the research question.
What tests will be done? What significance levels will
be used? Will one- or two-tailed tests be used?

Aim of Assessment: Finally, what needs to be de-
termined in the sample size analysis? Most often
you want to examine the statistical powers obtained
across the various scenarios for the effects, the sta-
tistical procedures (tests) to be used, and the feasible
total sample sizes. Some analysts find sample size
values that provide given levels of power, say 80%,
90%, or 95%. Other analysts compute the value for
some key effect parameter (e.g., a given treatment
mean) that will provide a given level of power at a
given sample size. You might even want to find the
�-level that will provide a given power at a given sam-
ple size for a given effect scenario.

The following examples illustrate how these compo-
nents can provide a guiding structure to facilitate more
rigorous planning of studies involving linear models.

Preview of Examples

The examples are organized by different types of lin-
ear models. The main distinction is in the type of pre-
dictors (or independent variables) in the model. All ex-
amples are univariate, involving only one continuous
response variable. The first two examples are simple
cases involving only categorical predictors, the t-test
and one-way ANOVA. Multiple regression involves
predictors treated as continuous variables, although
some may be dummy (0/1) variables representing cat-
egories. The multi-way ANOVA with covariates con-
tains categorical predictors of interest and additional
continuous predictors used as covariates to reduce
excess variability. Finally, power computations for
the multivariate general linear model (GLM) are dis-
cussed, without a detailed example, and guidelines
are given for some common linear models extensions
not covered by examples.

The format of each example is as follows. First the
type of linear model is briefly explained, and the prob-
lem situation of the study planner is revealed. The
five-component strategy explained in the “Compo-
nents of a Sample Size Analysis” section is applied
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to solve the problem, and then the power computa-
tion details are explained, including relevant equa-
tions and references. The equations are used to solve
the problem at hand, but they are sufficiently general
for the variety of different possible goals (e.g., solving
for power, sample size, etc.).

Ordinary Two-Sample t -test

The two-sample (pooled) t-test is equivalent to an
ANOVA with two groups and thus is a special case
of a linear model. Although power computations for
t-tests are widely understood and implemented, a
characterization following the five-component strat-
egy provides a useful framework for more complicated
examples. In addition, the last part of the example il-
lustrates the consideration of unbalanced designs and
costs.

Suppose an industrial chemist is researching whether
her firm should switch to a new grade of ammo-
nium chloride when producing an organic compound,
SHHS-01. A more expensive, finely ground grade is
touted to give a higher yield than the standard coarse
grade, but this needs to be tested. A 5% increase in
yield would offset the extra cost. The chemist’s goal is
to determine an appropriate sample size to have ade-
quate power in a comparison of the two grades using
a t-test.

Study Design: Under laboratory conditions de-
signed to mimic production conditions, equal numbers
of mini-batches of SHHS-01 will be made using either
the coarse or fine grade of ammonium chloride. The
primary outcome measure will be the yield, measured
simply as weight in grams.

Scenario Model: The conjectured “infinite data set”
has two groups of yields, each containing indepen-
dent and normally distributed data. The mean for the
fine group exceeds the mean for the coarse group.
There is no reason to suspect that the variability dif-
fers between groups.

Effects & Variability: Based on numerous previous
laboratory studies with the coarse ammonium chlo-
ride, the chemist knows that this yield averages about
160g/batch. Because this is an organic process, there
is significant variability as well, with a standard devia-
tion of 20g. For the fine ammonium chloride, biolog-
ical modeling predicts that the yield could be at least
10% greater, at 176g. The 20g standard deviation
should apply. This scenario is illustrated in Figure 1.

Statistical Method: The statistical question is
whether the fine grade ammonium chloride will pro-
duce at least 5% (8g) more SHHS-01 than the coarse
grade (to offset the extra cost). This situation con-

forms to an ordinary, one-tailed t-test, with hypothe-
ses H0 : �2��1 = �di� < 8 and H1 : �2��1 = �di� �
8. Making the mini-batches in the lab is inexpensive,
but making a Type I error could lead to establishing
a production process that is substantially more costly.
Hence, alpha will be set at 0.001 or, at most, 0.005.
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Figure 1. Conjectured Scenario for Coarse and
Fine Grades

Aim of Assessment: If the fine grade is really
10% more effective, as believed, then it will save the
company a lot of money. Thus, failing to discover
this would be so costly that the chemist decides to
produce enough mini-batches to achieve a statistical
power of 99%. Remember, making and weighing the
mini-batches is relatively inexpensive. So the chemist
wants to determine the required sample size to pro-
vide 99% power.

This required sample size is determined by solving
the following equation for n:

power = P (t(2n� 2; Æ) � t1��;2n�2)

where t(u; Æ) is distributed as noncentral t with u d.f.
and noncentrality Æ =

p
n=2(�di� � �0)=�, and tp;u is

the pth quantile of the central t distribution with u d.f.

With 99% power, the required sample size per group
is n = 303 for � = 0.005 and n = 370 for � = 0.001.
Hence, using N = 740 total will achieve outstanding
control of Type I and Type II errors. N = 606 is also
feasible.

Unbalanced Designs and Cost Suppose that in the
lab it costs 75% more to produce a mini-batch using
the experimental fine grade of ammonium chloride.
The chemist wonders if an unbalanced design with
fewer fine mini-batches than coarse ones would pro-
duce as much power but at less cost. Consider a 3:2
sampling ratio, i.e., cell weights of w1 = 3/5 and w2 =
2/5.
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Power computations can be performed in terms of
group weights and total sample size:

power = P (t(N � 2; Æ) � t1��;N�2)

where Æ =
p
Nw1w2(�di� � �0)=�.

To achieve 99% power using � = 0.001 requires 462
+ 308 = 770 cases versus 370 + 370 = 740 cases for
the balanced design. The unbalanced study design is
4.1% larger, but it would cost about 1.6% less to run.
While the ordinary two-group t-test has optimum sta-
tistical efficiency with a balanced design, it can have
sub-optimum budgetary efficiency if the cost per sam-
pling unit differs between the groups.

Note that two-tailed versions of the above formulas
are available, using the noncentral F = t2 distribution
(with noncentrality � = Æ2).

One-Way ANOVA with One-d.f. Contrast

This example extends the previous one by increasing
the number of groups from two to three. An appropri-
ate sample size will be determined for a comparison
(represented this time as a linear contrast) between
one group and the average of the other two.

Suppose the chemist introduced in the previous sec-
tion implements the comparison between the fine and
coarse grades of ammonium chloride and concludes
that the fine grade is advantageous, giving a yield
of about 176g as predicted. Plans to purchase the
fine grade chemical from Producer A are interrupted
when Producer B offers a package deal of “special-
fine” bundled with “super-fine” in a 1:1 ratio, for about
the same cost. Engineers at Producer B claim that
the special-fine grade yields 172g of SHHS-01, while
the super-fine yields 190g, with the same variability
as the fine grade from Producer A (SD = 20g). The
chemist is asked to compare the yield using Producer
A’s fine grade to the average yield of special fine and
super fine (used separately) supplied by Producer B,
with enough mini-batches to achieve 90% power if the
engineers are correct.

Study Design: The chemist will conduct experi-
ments using the three different grades of ammonium
chloride, with the two varieties from Producer B used
equally often and each twice as often as the Producer
A variety. In other words, the weights are 2 special-
fine : 2 super-fine : 1 fine (w1 = 0.4, w2 = 0.4, w3 =
0.2). The dependent variable is the yield in grams.

Scenario Model: The chemist will assume that the
chemicals from the two producers will produce mean
yields as previously surmised for Producer A and
claimed by engineers for Producer B.

Effects & Variability: The mean yields are conjec-
tured to be �1=172g (special-fine), �2=190g (super-
fine), and �3=176g (fine). The standard deviation is
assumed to be about 20g for each grade.

Statistical Method: A 1-way ANOVA will be con-
ducted to test a contrast of fine with average over
special-fine and super-fine, using the usual F statis-
tic with � = 0:05. The contrast can be written as a
CONTRAST statement for PROC GLM, for example,
as

contrast grade -1 -1 2

Aim of Assessment: The chemist wishes to calcu-
late the required sample size to achieve 90% power.

The required total sample size N can be calculated
from the following equation:

power = P (F (1; N �G; �) � F1��;1;N�G)

where

� = N

�PG

i=1 ci�i � c0

�2

�2
PG

i=1
c2
i

wi

and fcig are the contrast coefficients. The required
sample size is found to be 735 (rounded up from 732
to avoid fractional group sizes).

Multiple Linear Regression

Instead of categorical predictors as in the t-test and
1-way ANOVA, multiple regression involves continu-
ous and dummy independent variables. Although as
a special case multiple regression could be used with
dummy variables to conduct an ANOVA, the inten-
tion here is to demonstrate the more typical usage
focusing on tests of individual predictors controlling
for other predictors. Such a test is planned in this ex-
ample, and the goal is to compute the power.

One of the important considerations in multiple re-
gression and correlation analysis is whether to treat
the predictors as fixed or random. There are also
many alternative ways to characterize the effects, us-
ing various forms of correlations and regression co-
efficients. The example uses fixed predictors and in-
volves an effect specification in terms of partial cor-
relation. Following the example is a discussion of the
ramifications of the distinction between fixed and ran-
dom predictors and a collection of equations showing
the alternative ways to specify effects.

A team of preventive cardiologists is investigating
whether elevated serum homocysteine levels are
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linked to atherosclerosis (plaque build-up in coronary
arteries). The analysis will use ordinary least squares
regression to assess the relationship between total
homocysteine level (tHcy) and a plaque burden in-
dex (PBI), adjusting for six other variables: age, gen-
der, and plasma levels of folate, vitamins B6 and B12,
and a serum cholesterol index. The group wonders
whether 100 subjects will provide adequate statistical
power.

Using the five components, the power analysis breaks
down as follows:

Study Design: This is a correlational study at a sin-
gle time. Subjects will be screened so that about half
will have had a heart problem. All eight variables will
be measured during one visit.

Scenario Model: Most clinicians are familiar with
simple correlations between two variables, so the col-
laborating statistician decides to pose the statistical
problem in terms of estimating and testing the partial
correlation between X1 = tHcy and Y = PBI, control-
ling for the six other predictor variables (RY X1jX�1).
This greatly simplifies matters, especially the elicita-
tion of the conjectured effect.

The statistician uses partial regression plots like that
shown in Figure 2 to teach the team that the partial
correlation between PBI and tHcy is the correlation of
two sets of residuals obtained from ordinary regres-
sion models, one from regressing PBI on the six co-
variates and the other from regressing tHcy on the
same covariates. Thus each subject has “expected”
tHcy and PBI values based on the six covariates. The
cardiologists believe that subjects who are relatively
higher than expected on tHcy will also be relatively
higher than expected on PBI. The partial correlation
quantifies that adjusted association just like a stan-
dard simple correlation does with the unadjusted lin-
ear association between two variables.

Effects & Variability: Based on previously pub-
lished studies of various coronary risk factors and af-
ter viewing a set of scatterplots showing various cor-
relations, the team surmises that the true partial cor-
relation is likely to be at least 0.35.

Statistical Method: Regress PBI on tHcy and the six
other predictors, plus the intercept. Use an ordinary F
test to assess whether tHcy is a significant predictor in
this model with seven predictors. The test presumes
that the residuals come from a normal distribution.

Aim of Assessment: Compute the statistical pow-
ers associated with N = 80 and 100, using � = 0.05
and 0.01.
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Figure 2. Partial Correlation Plot

The exact power can be computed from the equation

power = P (F (p1; N � p� 1; �) � F1��;p1;N�p�1) (1)

where p is the total number of predictors in the model
(including the predictor of interest, but not the inter-
cept), p1 is the number of predictors being tested si-
multaneously (here, p1 = 1), and

� = N
R2
Y X1jX�1

1�R2
Y X1jX�1

(2)

The calculated powers range from 75% (N = 80, � =
0.01) to 96% (N = 100, � = 0.05). The latter result
is almost balanced with respect to Type I and Type II
error rates. The study seems well designed at N =
100.

Fixed vs. Random Predictors The computations
in the example assume a conditional model, as typ-
ically used in multiple linear regression. The predic-
tors (represented collectively as X) are assumed to
be fixed, and the responses Y are assumed to be
independently normally distributed conditional on X .
The usual test statistic considered is the Type III F
test where the null hypothesis states that all coeffi-
cients of the p1 predictors of interest are zero.

A related approach is the unconditional model, typ-
ically used in multiple correlation analysis, in which
predictors are assumed to be random. The variables
in Y and X are taken to have a joint multivariate nor-
mal distribution. Power computations differ for the
conditional and unconditional models. Gatsonis and
Sampson (1989) outline an exact power computa-
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tion method for the unconditional model due to Lee
(1972).

It is important to note, however, that the usual test
statistics for conditional and unconditional models are
equivalent, having exactly the same null distribution.
“The conceptual difference between them is primarily
one of interpretation and generalizability of the con-
clusions” (Gatsonis and Sampson 1989, p. 516).
Thus the strategies for describing effects in each of
the two approaches can be used interchangeably in
sample size analysis. For example, the cardiologists
conjectured effects in terms of partial correlation but
planned to use multiple regression.

Alternative Effect Specifications The remainder
of this section describes the various ways you can
describe effects using different types of correlations
and regression coefficients. You can use the same
parameterizations for either conditional or uncondi-
tional models in power computations. The well-known
method for the conditional framework is outlined ex-
plicitly here, and you can refer to Gatsonis and Samp-
son (1989) for analogous computations in the uncon-
ditional framework.

Consider the general situation in which you are inter-
ested in testing that the coefficients of p1 � 1 pre-
dictors in a set Xj are zero, controlling for all of the
other predictors X�j (comprised of p � p1 � 0 vari-
ables). For the conditional model, the power can be
computed using equation (1), where the noncentrality
� is defined differently for various alternative specifi-
cations of the effects. You can choose whichever one
is most convenient for expressing the conjectured ef-
fects in your situation.

One such specification involves the multiple partial
correlation RY Xj jX�j

:

� = N
R2
Y Xj jX�j

1�R2
Y Xj jX�j

You can also express the effects in terms of the mul-
tiple correlations in full (RY j(Xj ;X�j )) and reduced
(RY jX

�j
) nested models:

� = N
R2
Y j(Xj ;X�j)

�R2
Y jX

�j

1�R2
Y j(Xj ;X�j )

(3)

The numerator of (3) is equivalent to the squared mul-
tiple semipartial correlation R2

Y j(Xj jX�j)
. Thus

� = N
R2
Y j(Xj jX�j )

1�R2
Y j(Xj ;X�j)

(4)

You may find it easier to work in terms of standard
(zero-order) correlations, even though there are more
parameter values to specify. A form of � involving
the correlations between Y and variables in X =
fXj ; X�jg (labeled as vectors �XY and �X

�jY ), and
between pairs of variables in X (labeled as correlation
matrices SXX and SX

�jX�j
), is given by the following:

� = N
�0XY S

�1
XX�XY � �0X

�jY
S�1
X
�jX�j

�X
�jY

1� �0XY S
�1
XX�XY

(5)

The remaining specifications apply only to cases in
which Xj consists of a single predictor.

You can express � in terms of the standardized re-
gression coefficient ( ~�j) of Xj ; the tolerance of Xj ,
computed as 1 � R2

Xj jX�j
in a regression of Xj

on the other predictors; and the multiple correlation
RY j(Xj ;X�j ) for the full model:

� = N
~�2j (1�R2

Xj jX�j
)

1�R2
Y j(Xj ;X�j)

(6)

Or, you can posit the unstandardized coefficient �j
along with the tolerance of Xj , SD of Xj (�Xj

), and
SD of residual (�):

� = N
�2j (1�R2

Xj jX�j
)�2Xj

�2

If an exchangeable correlation structure is deemed
reasonable, equation (5) can be simplified to include
only the common correlation between Y and each
predictor (�XY ) and the common pairwise correlations
between predictors (�XX):

� = N
�2XY (1� �XX)

[1 + (p� 1)�XX � p�2XY ][1 + (p� 2)�XX ]

A useful compromise between the exchangeable cor-
relation structure and the necessity of specifying all
correlations is a relaxed exchangeable correlation
structure (Maxwell 2000), which allows different cor-
relations �XjY between Y and Xj , and �XjX�j

be-
tween Xj and the other predictors, in addition to com-
mon correlations �X

�jY between Y and components
of X�j , and �X

�jX�j
between elements of X�j :

� = N
R2
Y j(Xj ;X�j)

�R2
Y jX

�j

1�R2
Y j(Xj ;X�j )

where

R2
Y j(Xj ;X�j)

=
n
�2XjY

[1 + (p� 2)�X
�jX�j

]+
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(p� 1)�2X
�jY

� 2(p� 1)�XjY �X�jY �XjX�j

o
�

n
1� �X

�jX�j
+ (p� 1)�X

�jX�j
� �2XjX�j

o�1

and

R2
Y jX

�j
=

(p� 1)�2X
�jY

1 + (p� 2)�X
�jX�j

If you want to test contrasts of the regression coeffi-
cients, you can use the more general formulation dis-
cussed in the section “The Univariate GLM with Fixed
Effects.”

Multi-Way ANOVA with Fixed Effects and
Covariates

This next example features an ANOVA model that is
an extension of the kind of model considered in the
section “One-Way ANOVA with One-d.f. Contrast”
in the sense of having two factors (instead of one)
and additionally a continuous covariate. The planned
tests are also more complicated, involving several
contrasts. The goal of the scientists in the example is
to assess whether their largest possible sample size
will provide adequate (possibly excessive) power for
these tests.

The discussion in this section follows the five-
component layout as used in the previous examples.
Details regarding the mathematical power computa-
tions, and other alternative ways of describing the
components, are covered in the following section,
“The Univariate GLM with Fixed Effects.”

Suppose a team of animal scientists hypothesizes
that dietary supplements of the trace element sugian-
imum (fictitious) increase the growth rate in female
newborn rabbits. Standard rabbit chow contains 5
ppm sugianimum. The scientists want to study four
other supplemental formulations, +10, +20, +40, and
+80 ppm (with the standard chow designated as +0).
This will allow them to conduct an ANOVA to test
models with thresholds, ceiling effects, and/or dose-
response effects. They have sufficient facilities and
funding to study at most 240 rabbits but would be
pleased if fewer would seem to suffice.

Rabbits are eight to nine weeks old when they arrive
from the commercial breeder, and their body weight
is 1.5 � 0.25 kg (mean � SD). After eating only stan-
dard chow for the next 24 weeks, female rabbits of this
breed have a body weight of about 4.2 kg � 0.56 kg.

Study Design: The primary outcome measure will
be each rabbit’s body weight after 24 weeks on the
study.

Sugianimum level is represented by a factor called
Sugianimum Supplementation Level or SugiSupp,
with five levels (+0, +10, +20, +40, and +80 ppm).
The scientists will include rabbit feed from all five of
the major U.S. manufacturers (Gamma, Epsilon, Zeta,
Eta, and Theta) to enable greater generalizability of
the results. Call this factor Company. Thus, if all man-
ufacturers supplied all formulations, the design would
be a 5 � 5 factorial, Company � SugiSupp.

Suppose each company produces only two formula-
tions besides the standard one (+0 ppm), thus making
a complete factorial design impossible. The scientists
will use a randomized design with cell weights as dis-
played in Table 1. Thus, they are planning a 2:1:1
ratio for the standard and two supplemental formula-
tions for each company.

SugiSupp
Company +0 +10 +20 +40 +80

<1> Gamma 2 1 1 0 0
<2> Epsilon 2 1 0 1 0
<3> Zeta 2 0 1 0 1
<4> Eta 2 0 0 1 1
<5> Theta 2 1 0 0 1

Table 1. Cell Weights for Design

Rabbits that are larger at baseline tend to gain more
body weight during the study period. Because of
this correlation, the rabbits’ initial body weight Rab-
bitWgt00 could serve as a useful covariate by ac-
counting for extra variation in body weight at 24
weeks. So the scientists plan to include the measure-
ment of RabbitWgt00 in the study protocol.

Scenario Model: The scientists envision two differ-
ent scenarios for the means of body weights at 24
weeks across SugiSupp and Company. Both scenar-
ios assert a monotonically increasing dose-response
relationship until 40 ppm but a ceiling effect after
that, and the average weight gains differ by company.
“Scenario 1” conjectures that the pattern of sugiani-
mum effects is the same across companies, i.e., the
Company � SugiSupp interaction is null. “Scenario 2”
involves essentially the same main effects but reflects
the suspicion that Gamma’s +10 formulation is less ef-
fective than its own +0, and Epsilon’s +10 formulation
is unusually effective compared to its own +0.

Effects & Variability: For scenario 1, the scientists
conjecture means for the 5 � 5 factorial as shown in
Table 2. The means are displayed graphically in Fig-
ure 3.

One can confirm that these means conform perfectly
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to the main-effects-only linear model,

�fCompany;SugiSuppg = 4:2 +AfCompanyg +BfSugiSuppg

where Af1g = 0.0, Af2g = -0.2, Af3g = 0.2, Af4g = -0.1,
Af5g = 0.1; and Bf+0g = 0, Bf+10g = 0.1, Bf+20g = 0.4,
Bf+40g = 0.5, Bf+80g = 0.5.

SugiSupp
Company +0 +10 +20 +40 +80

<1> Gamma 4.2 4.3 4.6 4.7 4.7
<2> Epsilon 4.0 4.1 4.4 4.5 4.5
<3> Zeta 4.4 4.5 4.8 4.9 4.9
<4> Eta 4.1 4.2 4.5 4.6 4.6
<5> Theta 4.3 4.4 4.7 4.8 4.8

Table 2. Conjectured Means for Scenario 1
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Figure 3. Conjectured Means for Scenario 1

In scenario 2, the scientists consider the same main
effects but also a small interaction involving only the 2
� 2 cells in the top left corner of the table:

�f1;+0g = 4:3; �f1;+10g = 4:2;

�f2;+0g = 3:9; �f2;+10g = 4:2

All of the specifications for this problem can be incor-
porated into a single SAS data set, as follows.

proc plan ordered;
factors Company=5 SugiSupp=5 / noprint;
output out=Design Company cvals=(’Gamma’

’Epsilon’ ’Zeta’ ’Eta’ ’Theta’)
SugiSupp nvals=(0 10 20 40 80);

run;

data CellWeights;
input CellWgt @@;

datalines;

2 1 1 0 0
2 1 0 1 0
2 0 1 0 1
2 0 0 1 1
2 1 0 0 1
;

data CellMeans; keep Scenario1 Scenario2;
array A{5} (0.0 -0.2 0.2 -0.1 0.1);
array B{5} (0.0 0.1 0.4 0.5 0.5);
do i = 1 to 5; do j = 1 to 5;

Scenario1 = 4.2 + A{i} + B{j};
Scenario2 = Scenario1;
if ((i=1)&(j=1))

then Scenario2 = Scenario2 + 0.1;
else if ((i=1)&(j=2))

then Scenario2 = Scenario2 - 0.1;
else if ((i=2)&(j=1))

then Scenario2 = Scenario2 - 0.1;
else if ((i=2)&(j=2))

then Scenario2 = Scenario2 + 0.1;
output;

end; end;
run;
data rabbits5x5;

merge Design CellWeights CellMeans;
run;

The scientists consider 0.56 to be a reasonable guess
of the error SD, but they would also like to assess the
power assuming this SD is as high as 0.73. They be-
lieve there is a correlation of about �=0.45 between
baseline body weight and body weight after 24 weeks.
The design is randomized, and so there is no un-
derlying relationship between RabbitWgt00 and the
design factors, Company and SugiSupp. The team
also presumes that the Company and SugiSupp ef-
fects are not moderated by RabbitWgt00, i.e., there
is no RabbitWgt00 � Company or RabbitWgt00 �
SugiSupp interaction. Accordingly, the only effect of
adding RabbitWgt00 to the linear model will be to re-
duce the error standard deviation to (1 � �2)

1

2 of its
original value. Thus, � = 0.45 reduces the SD values

by 100
h
1� (1� �2)

1

2

i
% = 10.7%. So the conjectured

values for error SD (originally 0.56 and 0.73) become
0.5 and 0.65.

Statistical Method: The team assumes normality
for the distribution of rabbits’ body weights (condi-
tional on the explanatory variables). Variables such
as body weight tend to be positively skewed and may
need to be transformed prior to analysis. In addi-
tion, without such a transform, the SDs for the two
groups may not be equal, because there tends to be a
positive relationship between groups’ means and their
SDs. Both problems are often greatly mitigated by us-
ing a log transform, i.e., by assuming that the original
data is lognormal in distributional form. But for the
purposes of this example, assume that the normality
assumption for the body weights is reasonable.

This study could be analyzed in numerous ways. The
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strategy chosen should be incorporated into a sample
size analysis that conforms to the data analysis plan.
The scientists decide to compare each of the four sup-
plemental formulations with the control in an ANOVA,
using a Bonferroni correction for multiple testing with
overall � = 0.05, or � = 0.05/4 = 0.0125 per test. Alter-
natively, they could use Dunnett’s test. They will also
test for a dose-response relationship, assuming that
the essential component of that relationship is cap-
tured using just the linear trend across the five levels
of SugiSupp. Formally, this assumes that +0, +10,
+20, +40, and +80 ppm of sugianimum are equally
spaced in terms of the potential effect on body weight.
The appropriate contrast is

contrast "linear trend" SugiSupp -2 -1 0 1 2

The model is a two-way ANOVA with main effects only
and a covariate, which can typically be specified with
SAS code as

freq CellWgt;
class Company SugiSupp;
model Scenario1 Scenario2 = Company SugiSupp

RabbitWgt00;

Note that scenario 2, with its small interaction effect,
does not satisfy this statistical model. But power com-
putations are still perfectly valid. It may be of inter-
est to investigate how a model misspecification affects
power.

Contrasts between the standard formulation and each
of the alternatives can typically be specified with SAS
code as

contrast "+0 vs +10" SugiSupp 1 -1;
contrast "+0 vs +20" SugiSupp 1 0 -1;
contrast "+0 vs +40" SugiSupp 1 0 0 -1;
contrast "+0 vs +80" SugiSupp 1 0 0 0 -1;
contrast "linear trend" SugiSupp -2 -1 0 1 2;

Significance will be judged at � = 0.0125 for the pair-
wise comparisons and � = 0.05 for the test of a linear
trend in dose response.

Aim of Assessment: The scientists want to ascer-
tain whether 240 rabbits are sufficient to provide ade-
quate power for their planned tests, according to their
two scenario models. They wonder whether fewer
rabbits might suffice. To investigate the effect of sam-
ple size on power, they will also consider a design with
only 160 rabbits.

The approach used to calculate power for this situa-
tion is explained in the next section, “The Univariate
GLM with Fixed Effects.” The results computed using
UnifyPow (O’Brien 1998) are displayed in Table 3.

� = .0125 for Standard Deviation
comparisons and .05 0.5 0.65

for linear trend Total N Total N
Scenario Test 160 240 160 240

1 +0 vs +10 .047 .067 .032 .043
2 +0 vs +10 .047 .067 .032 .043
1 +0 vs +20 .573 .788 .332 .515
2 +0 vs +20 .529 .746 .301 .473
1 +0 vs +40 .804 .948 .532 .749
2 +0 vs +40 .833 .961 .566 .782
1 +0 vs +80 .942 .994 .737 .912
2 +0 vs +80 .942 .994 .737 .912
1 linear trend .996 .999 .941 .991
2 linear trend .996 .999 .946 .992

Table 3. Power Values

So, the small degree of interaction (in scenario 2)
barely affects the power. Assuming these scenarios
are reasonable, a main-effects-only model should suf-
fice. The study is likely to find significance for the
linear trend in dose/respose and the higher formula-
tions of SugiSupp, but it is also very likely that +10 will
be deemed “below threshold.” The scientists should
be conservative in reporting non-significant results for
the threshold comparisons, since the power is quite
low until +40. If the SD is 0.65, then perhaps only
+80 would see a threshold effect. Given the medi-
ocrity of the power values, the scientists realize that
they should use all 240 rabbits.

As a side note, a power analysis ignoring the covari-
ate RabbitWgt00 reveals that the maximum possible
power with SD = 0.73, for tests other than the lin-
ear trend contrast (which has very high power in all
cases), is 82.4% for the contrast between +0 and +80
with N = 240.

The next two sections outline power computations for
the general framework of linear models with fixed ef-
fects (univariate and then multivariate) and alternative
strategies for specifying the relevant components.

The Univariate GLM with Fixed Effects

The example in the previous section involves an
ANOVA with two factors and a covariate, a special
case of the univariate GLM with fixed effects.

Methods for computing power for the general linear
model with fixed effects have been developed in a
series of papers, providing exact results for univari-
ate models, as well as good approximations for both
multivariate models and univariate approaches to re-
peated measures. Muller et al. (1992) summarize
results for these situations, and O’Brien and Shieh
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(1992) develop a slightly improved power formula for
multivariate models.

The univariate GLM is discussed in this section, with
special emphasis on the alternative ways in which you
can specify the quantities involved in power computa-
tions. These quantities are encompassed by the five-
component layout as demonstrated in the examples
in this paper.

The multivariate GLM is discussed in the next sec-
tion. Computations for the univariate approach to re-
peated measures (with sphericity or without, using
Greenhouse-Geisser or Huynh-Feldt corrections) are
not discussed here but are similar in spirit to the ones
outlined in this section; details can be found in Muller
and Barton (1989) and Muller et al. (1992).

The univariate GLM is represented as follows:

Y = XB + � where � � N(0; �2)

where Y is the vector of responses, X is the design
matrix, B is the vector of effect coefficients, and � is
the vector of errors.

The independent variables represented in X may be
either categorical or continuous. Consequently, the
univariate GLM covers t-tests, fixed-effects ANOVA
and ANCOVA, and multiple linear regression, which
have been discussed along with examples in previous
sections. This section outlines a more general frame-
work and expounds on the various ways of expressing
the components required for a sample size analysis.

Typically, hypotheses of interest in these models have
the general form of a linear contrast

H0 : CB = �0

where C is a matrix of contrast coefficients and �0
is the null contrast value. Note that this formulation
covers the overall test and tests of individual effects
as special cases.

The components involved in power computations can
be broken down as follows, showing alternative for-
mats for how some of the quantities can be specified:

Study Design:
� design profiles: {essence design matrix} or

{exemplary X} or {empirical mean and co-
variance of X rows}

� sample size: {total sample size and
weights of design profiles} or {number of
replications of design profiles}

Effects & Variability:

� model parameters: {cell means} or {model
parameters using another coding scheme}
or {exemplary X and Y }

� error variance: {error standard deviation
(root MSE)} or {exemplary X and Y }

� multiple correlation between Y and contin-
uous covariates (if applicable)

Statistical Method:
� model equation

� contrast coefficients

� test statistic (including multiple comparison
information, if applicable)

� null contrast value

� significance level

Aim of Assessment:
� various (compute power, sample size, etc.)

The (exact) computation of power is intuitive in the
sense that it involves the noncentral F distribution
whose noncentrality is computed in exactly the same
way as the F test statistic except with estimates (B̂
and �̂) replaced by conjectured true values. For
the equations and other computational details, see
O’Brien and Shieh (1992). Although the equations
express power as a function of the other components,
solutions for sample size and other quantities can be
obtained via iteration.

There are several different ways in which you can
specify the components required to compute power.
You may choose to specify some or all quantities di-
rectly, such as the design matrix (X), error standard
deviation (�), and model parameters (B). Recall that
in the rabbit example in the previous section, SD was
posited directly.

Instead of the full design matrix, you can provide the
essence design matrix (the collection of unique rows
in X) along with the weights or frequencies of each
row. This has the benefit of expressing the design pro-
files and sample sizes independently of each other,
since the number of rows in the full design matrix X
varies with sample size.

Even if you don’t code the X matrix as a cell-means
model, you can express the model parameters B as
cell means, the collection of mean response values at
each factor-level combination. This is often the most
familiar coding scheme.

The CONTRAST statement in GLM and other
SAS/STAT procedures can be a handy shorthand
way for specifying contrasts of interest in complicated
models.
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As an alternative to specifying quantities directly, you
can formulate an exemplary data set, a hypothetical
data set having the same format as the one that will
eventually be used in the data analysis. Instead of
gathering real data, however, you fill the exemplary
data set with “pretend” observations that are repre-
sentative of the scenario for which you want to per-
form power computations. It summarizes the mean
scenarios and cell weights under consideration. Often
this approach is easier (than direct parameter specifi-
cation) for inferring the design, effect values, and (op-
tionally) error standard deviation. Recall that in the
rabbit example in the previous section, an exemplary
data set was used to specify the design and means.

To provide a minimally useful amount of information,
an exemplary data set must contain each design pro-
file that will be used, and the response values must be
indicative of conjectured effects. This allows the de-
sign structure and effect values to be inferred. If the
design profiles occur in the same proportion as they
will in the actual study, then the profile weights and
error standard deviation can also be inferred. Since
the model and statistical test cannot be inferred from
exemplary data, they must be specified separately.

Special considerations apply in the presence of con-
tinuous independent variables (“covariates”), depend-
ing on whether they are involved in the statistical
tests. In a randomized design where the covariates
Xc are measured at baseline (before randomization)
and are not included in the contrast, you can com-
pute an approximate power as demonstrated in the
rabbit example in the previous section. Conjecture
the (multiple) correlation R2

Y jXc
between Y and Xc.

Reduce the standard deviation of the residual term to
�(1�R2

Y jXc
)
1

2 . Proceed as if the covariates are not in
the model, except that the degrees of freedom for the
residual is reduced by the number of covariates. This
simplification holds only if Xc is uncorrelated with the
variables already in the model.

If the covariate distribution differs across groups,
then the contrasts apply to the least square means
(LSMEANS) rather than to the simple means.

If covariates are included in the statistical tests, then
you have two feasible (albeit complicated) strategies
to choose from. For contrasts amounting to tests of
individual effects, you can re-cast the contrast and
effects in terms of correlations and use one of the
approaches described in the “Multiple Linear Regres-
sion” section. Or for any contrast, you can specify X
in its full form or in terms of its empirical mean and
covariance.

The Multivariate GLM with Fixed Effects

The multivariate GLM is an extension of the univari-
ate GLM in the sense of having more than one re-
sponse variable, i.e., Y is a matrix instead of a vec-
tor. Important special cases include repeated mea-
sures and MANOVA. Although exact power computa-
tions are not availiable except in the case of one-d.f.
contrasts, O’Brien and Shieh (1992) develop good ap-
proximate formulas.

As an example, the model used for the rabbits in the
“Multi-Way ANOVA with Fixed Effects and Covariates”
section could be extended to a multivariate model by
including body weight measurements at a number of
different times, say, 12, 24, and 36 weeks.

The multivariate GLM is represented as follows:

Y = XB + � where �i � N(0;�)

where Y is the matrix of responses, X is the design
matrix, B is the matrix of effect coefficients, � is the
matrix of errors (with rows f�ig), and � is the covari-
ance matrix of the Y columns (varying over “within”
factor levels). The matrix � is often referred to as the
covariance of repeated measures.

The hypothesis under consideration is the contrast

H0 : CBA = �0

where C is a “between” contrast matrix (involving ef-
fects specified by X), and A is a “within” contrast ma-
trix (involving the columns of Y ).

All of the sample size analysis components discussed
for the univariate GLM also apply for the multivariate
model. In addition, you must specify the test statistic,
the covariance of repeated measures, and the within
contrast matrix. Special forms of the within contrast
matrix give rise to special cases such as classical
MANOVA, growth profile analysis with time polynomi-
als, and between-trend analysis. Here is a summary
of the additional required components in a multivari-
ate GLM sample size analysis:

Study Design:
� number of repeated measurements (i.e.,

number of columns in Y )

Effects & Variability:
� covariance of repeated measures: {covari-

ance matrix} or {type of covariance ma-
trix and relevant parameters (for example,
compound symmetry or AR(1))} or {exem-
plary X and Y }

Statistical Method:
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� “within” contrast coefficients

� test statistic: Wilk’s likelihood ratio,
Hotelling-Lawley trace, Pillai trace, etc.

A Survey of Other Situations

There are many types of linear models, and other ap-
proaches to the multivariate models with fixed effects,
not covered in the previous sections. This section
presents a brief summary for sample size analysis
with other popular types of linear models.

Lognormal Data When the data are lognormally
distributed in an ANOVA, you can specify effects in
terms of mean ratios, supply a conjecture for the co-
efficient of variation (assumed common across design
profiles), and proceed with the same approaches al-
ready developed for standard ANOVA models. Log-
normal outcomes occur in many situations, such as
when the response variable is a probability or growth
measurement. Often you can express cell means
conveniently in this paradigm, as a fraction of the ref-
erence or baseline level.

Multiple Comparisons When a study involves
multiple inferences or multiple comparisons, power
considerations require specifying precisely which in-
ferences you want power for. Westfall et al. (1999)
discuss the issue and give some computational tools.

Mixed Models Currently there is no accepted gen-
eral standard for power computations in mixed lin-
ear models, with both fixed and random effects, al-
though methods have been developed for some spe-
cial cases. It is an active area of research, and
currently simulation remains the recommended ap-
proach.

Some classes of models with random effects (for ex-
ample, simple split-plot designs) can be re-cast as
multivariate linear models, with the random effect
modeled instead as multiple response values. Power
analysis can thus be performed using the methods
discussed in this paper.

O’Brien and Muller (1993, section 8.5.2) show an ex-
act power computation for a one-way random-effects
ANOVA using a multiple of a central F distribution.
Lenth (2000) computes approximate power for a wide
variety of balanced ANOVA designs with fixed and
random effects (where all of the random effects are
mutually independent, inducing a compound symme-
try correlation structure) by constructing F tests as
ratios of expected mean squares and applying Sat-
terthwaite corrections for degrees of freedom. Effects
are specified as variance components for random fac-
tors and sums of squares for fixed factors.

Power analysis is particularly complicated for mixed
models, due to the wide variety of statistical tests that
are available. Helms (1992) develops a method for
computing approximate power for contrasts of fixed
effects, for the approximate F test involving REML
estimators of the model coefficients and covariance.
The non-null distribution is approximated by a non-
central F with noncentrality estimated much in the
same way as O’Brien and Shieh (1992) do for the
multivariate GLM, by replacing estimates with conjec-
tured true values.

Simulation Regardless of the availablility of ex-
act or approximate formulas for power computations,
simulation remains a viable approach for conducting a
sample size analysis for any linear model (indeed, any
statistical model). You must be able to simulate real-
izations of the model (in other words, data sets gener-
ated according to the conjectured model, design, ef-
fects, and variability), compute the test statistic, and
determine when the null hypothesis is rejected. You
can repeat this process and estimate power as the
percentage of rejections.

Retrospective Analysis This paper has focused
on prospective power calculations, performed as part
of study planning and not based directly on actual
data. Retrospective calculations attempt to infer the
power of a study already performed or estimate power
from pilot data. Bias corrections should be used in
such retrospective analyses. In addition, since the
variability in the observed data can be characterized
and propagated through the power analysis, confi-
dence intervals for power can be constructed. These
issues are discussed thoroughly in Muller and Pasour
(1997), Taylor and Muller (1996), and O’Brien and
Muller (1993).

Conclusion

Power and sample size determination has been illus-
trated for several varieties of linear models, ranging
from simple t-tests to multivariate models. For any of
these situations, you can gather the information re-
quired for power computations by considering five as-
pects of study planning: the design, scenario models
representing beliefs about the data, specific conjec-
tures about the effects and variability, the statistical
method to be used in data analysis, and the aim of
the assessment. The ensuing power computations re-
veal important aspects about the planned study, such
as adequate choices for sample sizes or the likeli-
hood of significant results. Future SAS software will
provide analytical tools to help you characterize and
solve such problems in power and sample size analy-
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sis.
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